ﻻ يوجد ملخص باللغة العربية
Let k, p, q be positive integers with k < p < q+1. We prove that the maximum spectral radius of a simple bipartite graph obtained from the complete bipartite graph Kp,q of bipartition orders p and q by deleting k edges is attained when the deleting edges are all incident on a common vertex which is located in the partite set of order q. Our method is based on new sharp upper bounds on the spectral radius of bipartite graphs in terms of their degree sequences.
Let $G$ denote a bipartite graph with $e$ edges without isolated vertices. It was known that the spectral radius of $G$ is at most the square root of $e$, and the upper bound is attained if and only if $G$ is a complete bipartite graph. Suppose that
In this paper, we classify the connected non-bipartite integral graphs with spectral radius three.
Let $G$ be a simple graph with vertex set $V(G) = {v_1 ,v_2 ,cdots ,v_n}$. The Harary matrix $RD(G)$ of $G$, which is initially called the reciprocal distance matrix, is an $n times n$ matrix whose $(i,j)$-entry is equal to $frac{1}{d_{ij}}$ if $i ot
It is not hard to find many complete bipartite graphs which are not determined by their spectra. We show that the graph obtained by deleting an edge from a complete bipartite graph is determined by its spectrum. We provide some graphs, each of which
The odd wheel $W_{2k+1}$ is the graph formed by joining a vertex to a cycle of length $2k$. In this paper, we investigate the largest value of the spectral radius of the adjacency matrix of an $n$-vertex graph that does not contain $W_{2k+1}$. We det