ترغب بنشر مسار تعليمي؟ اضغط هنا

On graphs with maximum Harary spectral radius

176   0   0.0 ( 0 )
 نشر من قبل Shujing Wang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a simple graph with vertex set $V(G) = {v_1 ,v_2 ,cdots ,v_n}$. The Harary matrix $RD(G)$ of $G$, which is initially called the reciprocal distance matrix, is an $n times n$ matrix whose $(i,j)$-entry is equal to $frac{1}{d_{ij}}$ if $i ot=j$ and $0$ otherwise, where $d_{ij}$ is the distance of $v_i$ and $v_j$ in $G$. In this paper, we characterize graphs with maximum spectral radius of Harary matrix in three classes of simple connected graphs with $n$ vertices: graphs with fixed matching number, bipartite graphs with fixed matching number, and graphs with given number of cut edges, respectively.



قيم البحث

اقرأ أيضاً

166 - Chia-an Liu , Chih-wen Weng 2014
Let k, p, q be positive integers with k < p < q+1. We prove that the maximum spectral radius of a simple bipartite graph obtained from the complete bipartite graph Kp,q of bipartition orders p and q by deleting k edges is attained when the deleting e dges are all incident on a common vertex which is located in the partite set of order q. Our method is based on new sharp upper bounds on the spectral radius of bipartite graphs in terms of their degree sequences.
Let $G$ denote a bipartite graph with $e$ edges without isolated vertices. It was known that the spectral radius of $G$ is at most the square root of $e$, and the upper bound is attained if and only if $G$ is a complete bipartite graph. Suppose that $G$ is not a complete bipartite graph, and $e-1$ and $e+1$ are not twin primes. We determine the maximal spectral radius of $G$. As a byproduct of our study, we obtain a spectral characterization of a pair $(e-1, e+1)$ of integers to be a pair of twin primes.
123 - Xiying Yuan , Zhenan Shao 2021
Let $mathscr{G}_{n,beta}$ be the set of graphs of order $n$ with given matching number $beta$. Let $D(G)$ be the diagonal matrix of the degrees of the graph $G$ and $A(G)$ be the adjacency matrix of the graph $G$. The largest eigenvalue of the nonneg ative matrix $A_{alpha}(G)=alpha D(G)+A(G)$ is called the $alpha$-spectral radius of $G$. The graphs with maximal $alpha$-spectral radius in $mathscr{G}_{n,beta}$ are completely characterized in this paper. In this way we provide a general framework to attack the problem of extremal spectral radius in $mathscr{G}_{n,beta}$. More precisely, we generalize the known results on the maximal adjacency spectral radius in $mathscr{G}_{n,beta}$ and the signless Laplacian spectral radius.
In this paper, we classify the connected non-bipartite integral graphs with spectral radius three.
For a graph $H$, a graph $G$ is $H$-saturated if $G$ does not contain $H$ as a subgraph but for any $e in E(overline{G})$, $G+e$ contains $H$. In this note, we prove a sharp lower bound for the number of paths and walks on length $2$ in $n$-vertex $K _{r+1}$-saturated graphs. We then use this bound to give a lower bound on the spectral radii of such graphs which is asymptotically tight for each fixed $r$ and $ntoinfty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا