ﻻ يوجد ملخص باللغة العربية
In the last decade, scenario-based serious-games have become a main tool for learning new skills and capabilities. An important factor in the development of such systems is the overhead in time, cost and human resources to manually create the content for these scenarios. We focus on how to create content for scenarios in medical, military, commerce and gaming applications where maintaining the integrity and coherence of the content is integral for the systems success. To do so, we present an automatic method for generating content about everyday activities through combining computer science techniques with the crowd. We use the crowd in three basic ways: to capture a database of scenarios of everyday activities, to generate a database of likely replacements for specific events within that scenario, and to evaluate the resulting scenarios. We found that the generated scenarios were rated as reliable and consistent by the crowd when compared to the scenarios that were originally captured. We also compared the generated scenarios to those created by traditional planning techniques. We found that both methods were equally effective in generated reliable and consistent scenarios, yet the main advantages of our approach is that the content we generate is more varied and much easier to create. We have begun integrating this approach within a scenario-based training application for novice investigators within the law enforcement departments to improve their questioning skills.
Enhancing evacuee safety is a key factor in reducing the number of injuries and deaths that result from earthquakes. One way this can be achieved is by training occupants. Virtual Reality (VR) and Serious Games (SGs), represent novel techniques that
Multiplayer Online Battle Arena (MOBA) games have received increasing popularity recently. In a match of such games, players compete in two teams of five, each controlling an in-game avatars, known as heroes, selected from a roster of more than 100.
Reinforcement learning (RL) agents in human-computer interactions applications require repeated user interactions before they can perform well. To address this cold start problem, we propose a novel approach of using cognitive models to pre-train RL
Consensus Sequences of event logs are often used in process mining to quickly grasp the core sequence of events to be performed in a process, or to represent the backbone of the process for doing other analyses. However, it is still not clear how man
Model efficiency is crucial for object detection. Mostprevious works rely on either hand-crafted design or auto-search methods to obtain a static architecture, regardless ofthe difference of inputs. In this paper, we introduce a newperspective of des