ترغب بنشر مسار تعليمي؟ اضغط هنا

The Properties of H{alpha} Emission-Line Galaxies at z = 2.24

172   0   0.0 ( 0 )
 نشر من قبل FangXia An
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using deep narrow-band $H_2S1$ and $K_{s}$-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 H$alpha$ emission-line galaxies (ELGs) at $z=2.24$ with the 5$sigma$ depths of $H_2S1=22.8$ and $K_{s}=24.8$ (AB) over 383 arcmin$^{2}$ area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 H$alpha$ ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the H$alpha$ ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with H$alpha$ luminosity and stellar mass (SM). Our results suggest that H$alpha$ ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic H$alpha$ luminosity function (LF) at $z=2.24$, obtaining a best-fit Schechter function characterized by a faint-end slope of $alpha=-1.3$. This is shallower than the typical slope of $alpha sim -1.6$ in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with H$alpha$ luminosity. Moreover, we find that our H$alpha$ LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.

قيم البحث

اقرأ أيضاً

109 - Ken-ichi Tadaki 2010
We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) wh ich corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of galaxy formation bias at high redshifts.
Star-forming galaxies with strong nebular and collisional emission lines are privileged target galaxies in forthcoming cosmological large galaxy redshift surveys. We use the COSMOS2015 photometric catalog to model galaxy spectral energy distributions and emission-line fluxes. We adopt an empirical but physically-motivated model that uses information from the best-fitting spectral energy distribution of stellar continuum to each galaxy. The emission-line flux model is calibrated and validated against direct flux measurements in subsets of galaxies that have 3D-HST or zCOSMOS-Bright spectra. We take a particular care in modelling dust attenuation such that our model can explain both H$alpha$ and [OII] observed fluxes at different redshifts. We find that a simple solution to this is to introduce a redshift evolution in the dust attenuation fraction parameter, $f=E_{rm star}(B-V)/E_{rm gas}(B-V)$, as $f(z)=0.44+0.2z$. From this catalog, we derive the H$alpha$ and [OII] luminosity functions up to redshifts of about 2.5 after carefully accounting for emission line flux and redshift errors. This allows us to make predictions for H$alpha$ and [OII] galaxy number counts in next-generation cosmological redshift surveys. Our modeled emission lines and spectra in the COSMOS2015 catalog shall be useful to study the target selection for planned next-generation galaxy redshift surveys and we make them publicly available as `EL-COSMOS on the ASPIC database.
We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrar ed grism spectroscopy. Both sets of galaxies extend over the same range in stellar mass (7.5 < logM < 10.5), size (0.5 < R < 3.0 kpc), and star-formation rate (~1 < SFR < 100). Remarkably, a comparison of the most commonly used physical and morphological parameters -- stellar mass, half-light radius, UV slope, star formation rate, ellipticity, nearest neighbor distance, star formation surface density, specific star formation rate, [O III] luminosity, and [O III] equivalent width -- reveals no statistically significant differences between the populations. This suggests that the processes and conditions which regulate the escape of Ly-alpha from a z ~ 2 star-forming galaxy do not depend on these quantities. In particular, the lack of dependence on the UV slope suggests that Ly-alpha emission is not being significantly modulated by diffuse dust in the interstellar medium. We develop a simple model of Ly-alpha emission that connects LAEs to all high-redshift star forming galaxies where the escape of Ly-alpha depends on the sightline through the galaxy. Using this model, we find that mean solid angle for Ly-alpha escape is 2.4+/-0.8 steradians; this value is consistent with those calculated from other studies.
476 - XianZhong Zheng 2020
Massive galaxy overdensities at the peak epoch of cosmic star formation provide ideal testbeds for the formation theories of galaxies and large-scale structure. We report the confirmation of two massive galaxy overdensities at $z=2.24$, BOSS1244 and BOSS1542, selected from the MAMMOTH project using Ly$alpha$ absorption from the intergalactic medium over the scales of 15$-$30 $h^{-1}$ Mpc imprinted on the quasar spectra. We use H$alpha$ emitters (HAEs) as the density tracer and identify them using deep narrowband $H_2S1$ and broadband $K_{rm s}$ imaging data obtained with CFHT/WIRCam. In total, 244 and 223 line emitters are detected in these two fields, and $196pm 2$ and $175pm 2$ are expected to be HAEs with an H$alpha$ flux of $> 2.5times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$ (corresponding to an SFR of $>$5 M$_odot$ yr$^{-1}$). The detection rate of HAE candidates suggests an overdensity factor of $delta_{rm gal}=5.6pm0.3$ and $4.9pm0.3$ over the volume of $54times32times32$ cMpc$^3$. The overdensity factor increases $2-3$ times when focusing on the high-density regions of scales $10-15$ cMpc. Interestingly, the HAE density maps reveal that BOSS1244 contains a dominant structure, while BOSS1542 manifests as a giant filamentary structure. We measure the H$alpha$ luminosity functions (HLF), finding that BOSS1244s HLF is nearly identical to that of the general field at the same epoch, while BOSS1542 shows an excess of HAEs with high H$alpha$ luminosity, indicating the presence of enhanced star formation or AGN activity. We conclude that the two massive MAMMOTH overdensities are undergoing a rapid galaxy mass assembly.
69 - D. Sobral 2009
New results from a large survey of H-alpha emission-line galaxies at z=0.84 using WFCAM/UKIRT and a custom narrow-band filter in the J band are presented as part of the HiZELS survey. Reaching an effective flux limit of 1e-16 erg/s/cm^2 in a comoving volume of 1.8e5 Mpc^3, this represents the largest and deepest survey of its kind ever done at z~1. There are 1517 potential line emitters detected across 1.4 sq.deg of the COSMOS and UKIDSS UDS fields, of which 743 are selected as H-alpha emitters. These are used to calculate the H-alpha luminosity function, which is well-fitted by a Schechter function with phi*=10^(-1.92+-0.10) Mpc^-3, L*=10^(42.26+-0.05)erg/s, and alpha=-1.65+-0.15. The integrated star formation rate density (SFRD) at z=0.845 is 0.15+-0.01 M_sun/yr/Mpc^3. The results robustly confirm a strong evolution of SFRD from the present day out to z~1 and then flattening to z~2, using a single star-formation indicator. Out to z~1, both the characteristic luminosity and space density of the H-alpha emitters increase significantly; at higher redshifts, L* continues to increase, but phi* decreases. The z=0.84 H-alpha emitters are mostly disk galaxies (82+-3%), while 28+-4% of the sample show signs of merger activity and contribute ~20% to the total SFRD. Irregulars and mergers dominate the H-alpha luminosity function above L*, while disks are dominant at fainter luminosities. These results demonstrate that it is the evolution of normal disk galaxies that drives the strong increase in the SFRD from the current epoch to z~1, although the continued strong evolution of L* beyond z=1 suggests an increasing importance of merger activity at higher redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا