ترغب بنشر مسار تعليمي؟ اضغط هنا

MAMMOTH: Confirmation of Two Massive Galaxy Overdensities at $z=2.24$ with H$alpha$ Emitters

477   0   0.0 ( 0 )
 نشر من قبل X. Z. Zheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف XianZhong Zheng




اسأل ChatGPT حول البحث

Massive galaxy overdensities at the peak epoch of cosmic star formation provide ideal testbeds for the formation theories of galaxies and large-scale structure. We report the confirmation of two massive galaxy overdensities at $z=2.24$, BOSS1244 and BOSS1542, selected from the MAMMOTH project using Ly$alpha$ absorption from the intergalactic medium over the scales of 15$-$30 $h^{-1}$ Mpc imprinted on the quasar spectra. We use H$alpha$ emitters (HAEs) as the density tracer and identify them using deep narrowband $H_2S1$ and broadband $K_{rm s}$ imaging data obtained with CFHT/WIRCam. In total, 244 and 223 line emitters are detected in these two fields, and $196pm 2$ and $175pm 2$ are expected to be HAEs with an H$alpha$ flux of $> 2.5times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$ (corresponding to an SFR of $>$5 M$_odot$ yr$^{-1}$). The detection rate of HAE candidates suggests an overdensity factor of $delta_{rm gal}=5.6pm0.3$ and $4.9pm0.3$ over the volume of $54times32times32$ cMpc$^3$. The overdensity factor increases $2-3$ times when focusing on the high-density regions of scales $10-15$ cMpc. Interestingly, the HAE density maps reveal that BOSS1244 contains a dominant structure, while BOSS1542 manifests as a giant filamentary structure. We measure the H$alpha$ luminosity functions (HLF), finding that BOSS1244s HLF is nearly identical to that of the general field at the same epoch, while BOSS1542 shows an excess of HAEs with high H$alpha$ luminosity, indicating the presence of enhanced star formation or AGN activity. We conclude that the two massive MAMMOTH overdensities are undergoing a rapid galaxy mass assembly.

قيم البحث

اقرأ أيضاً

281 - Dongdong Shi 2021
We present spectroscopic confirmation of two new massive galaxy protoclusters at $z=2.24pm0.02$, BOSS1244 and BOSS1542, traced by groups of Coherently Strong Ly$alpha$ Absorption (CoSLA) systems imprinted in the absorption spectra of a number of quas ars from the SDSS III and identified as overdensities of narrowband-selected H$alpha$ emitters (HAEs). Using MMT/MMIRS and LBT/LUCI near-infrared (NIR) spectroscopy, we confirm 46 and 36 HAEs in the BOSS1244 and BOSS1542 fields, respectively. BOSS1244 displays a South-West (SW) component at $z=2.230pm0.002$ and another North-East (NE) component at $z=2.246pm0.001$ with the line-of-sight velocity dispersions of $405pm202$ km s$^{-1}$ and $377pm99$ km s$^{-1}$, respectively. Interestingly, we find that the SW region of BOSS1244 contains two substructures in redshift space, likely merging to form a larger system. In contrast, BOSS1542 exhibits an extended filamentary structure with a low velocity dispersion of $247pm32$ km s$^{-1}$ at $z=2.241pm0.001$, providing a direct confirmation of a large-scale cosmic web in the early Universe. The galaxy overdensities $delta_{rm g}$ on the scale of 15 cMpc are $22.9pm4.9$, $10.9pm2.5$, and $20.5pm3.9$ for the BOSS1244 SW, BOSS1244 NE, and BOSS1542 filament, respectively. They are the most overdense galaxy protoclusters ($delta_{rm g}>20$) discovered to date at $z>2$. These systems are expected to become virialized at $zsim0$ with a total mass of $M_{rm SW}=(1.59pm0.20)times10^{15}$ $M_{odot}$, $M_{rm NE} =(0.83pm0.11)times10^{15}$ $M_{odot}$ and $M_{rm filament}=(1.42pm0.18)times10^{15}$ $M_{odot}$, respectively. Together with BOSS1441 described in Cai et al. (2017a), these extremely massive overdensities at $z=2-3$ exhibit different morphologies, indicating that they are in different assembly stages in the formation of early galaxy clusters.
173 - F. X. An , X. Z. Zheng 2014
Using deep narrow-band $H_2S1$ and $K_{s}$-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 H$alpha$ emission-line galaxies (ELGs) at $z=2.24$ with the 5$sigma$ depths of $H_2S1=22.8$ and $K_{s}=24.8$ (AB) over 383 arcmin$^{2}$ area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 H$alpha$ ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the H$alpha$ ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with H$alpha$ luminosity and stellar mass (SM). Our results suggest that H$alpha$ ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic H$alpha$ luminosity function (LF) at $z=2.24$, obtaining a best-fit Schechter function characterized by a faint-end slope of $alpha=-1.3$. This is shallower than the typical slope of $alpha sim -1.6$ in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with H$alpha$ luminosity. Moreover, we find that our H$alpha$ LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.
We report the first direct and robust measurement of the faint-end slope of the Lyman-alpha emitter (LAE) luminosity function at z = 5.7. Candidate LAEs from a low-spectral-resolution blind search with IMACS on Magellan-Baade were targeted at higher resolution to distinguish high redshift LAEs from foreground galaxies. All but 2 of our 42 single-emission-line systems have flux F $< 2.0 times 10^{-17}$ ergs s$^{-1}$ cm$^{-2}$, making these the faintest emission-lines observed for a z = 5.7 sample with known completeness, an essential property for determining the faint end slope of the LAE luminosity function. We find 13 LAEs as compared to 29 foreground galaxies, in very good agreement with the modeled foreground counts predicted in Dressler et al. (2011a) that had been used to estimate a faint-end slope of $alpha$ = -2.0 for the LAE luminosity function. A 32% LAE fraction, LAE/(LAE+foreground), within the flux interval F = $2-20 times 10^{-18}$ ergs s$^{-1}$ cm$^{-2}$, constrains the faint end slope of the luminosity function to -2.35 < $alpha$ < -1.95 (1-$sigma$). We show how this steep LF should provide, to the limit of our observations, more than 20% of the flux necessary to maintain ionization at z=5.7, with a factor-of-ten extrapolation in flux reaching more than 55%. This is in addition to a comparable contribution from Lyman Break Galaxies M$_{UV} le$ -18. We suggest that this bodes well for a sufficient supply of Lyman continuum photons by similar, low-mass star forming galaxies within the reionization epoch at z $approx$ 7, only 250 Myr earlier.
We want to investigate whether we can use Lyalpha emission to obtain information on the environment properties and whether Lyalpha emitters show different characteristics as a function of their environment. We estimated local densities in the VANDELS Chandra Deep Field-South (CDFS) and UKIDSS Ultra Deep Survey (UDS) fields, by using a three-dimensional algorithm which works in the RA-dec-redshift space. We selected a sample of 131 Lyalpha-emitting galaxies (EW(Lyalpha)>0 A), unbiased with respect to environmental density, to study their location with respect to the over- or under-dense environment. We identify 13 (proto)cluster candidates in the CDFS and nine in the UDS at 2<z<4, based on photometric and spectroscopic redshifts from VANDELS and from all the available literature. No significant difference is observed in the rest-frame U-V color between field and galaxies located within the identified overdensities. We find that VANDELS Lyalpha emitters (LAEVs) lie preferentially outside of overdense regions as the majority of the galaxies with spectroscopic redshifts from VANDELS. The LAEVs in overdense regions tend to have low Lyalpha equivalent widths and low specific SFRs, and they also tend to be more massive than the LAEVs in the field. Their stacked Lyalpha profile shows a dominant red peak and a hint of a blue peak. Our results show that LAEVs are likely to be influenced by the environment and favour a scenario with outflows of low expansion velocities and high HI column densities for galaxies in overdense regions. An outflow with low expansion velocity could be related to the way galaxies are forming stars in overdense regions; the high HI column density can be a consequence of the gravitational potential of the overdensity. Therefore, Lyalpha-emitting galaxies can provide useful insights on the environment in which they reside.
We present a comparison of the spatial distributions of Ly$alpha$ emitters (LAEs) and massive star-forming and quiescent galaxies (SFGs and QGs) at $2<z<4.5$. We use the photometric redshift catalog to select SFGs and QGs and a LAE catalog from inter mediate/narrow bands obtained from the Subaru Telescope and Isaac-Newton Telescope in Cosmic Evolution Survey (COSMOS). We derive the auto-/cross- correlation signals of SFGs, QGs, and LAEs, and the galaxy overdensity distributions at the position of them. Whereas the cross-correlation signals of SFGs and QGs are explained solely by their halo mass differences, those of SFGs and LAEs are significantly lower than those expected from their auto-correlation signals, suggesting that some additional physical processes are segregating these two populations. Such segregation of SFGs and LAEs becomes stronger for rest-frame ultraviolet faint LAEs ($M_{rm UV}>-20$). From the overdensity distributions, LAEs are located in less dense regions than SFGs and QGs, whereas SFGs and QGs tend to be in the same overdensity distributions. The different spatial distributions of LAEs compared to those of massive galaxies may be attributed to assembly bias or large amounts of neutral hydrogen gas associated with massive halos. These results reinforce the importance of exploring multiple galaxy populations in quantifying the intrinsic galaxy environment of the high-$z$ universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا