ﻻ يوجد ملخص باللغة العربية
In this paper, we discuss rotation number on the invariant curve of a one parameter family of outer billiard tables. Given a convex polygon $eta$, we can construct an outer billiard table $T$ by cutting out a fixed area from the interior of $eta$. $T$ is piece-wise hyperbolic and the polygon $eta$ is an invariant curve of $T$ under the billiard map $phi$. We will show that, if $beta $ is a periodic point under the outer billiard map with rational rotation number $tau = p / q$, then the $n$th iteration of the billiard map is not the local identity at $beta$. This proves that the rotation number $tau$ as a function of the area parameter is a devils staircase function.
Quasi-invariant curves are used in the study of hedgehog dynamics. Denjoy-Yoccoz lemma is the preliminary step for Yoccozs complex renormalization techniques for the study of linearization of analytic circle diffeomorphisms. We give a geometric inter
Rare earth intermetallic compounds have been fascinating scientists due to rich phenomena induced by the interplay between localized $f$-orbitals and conduction electrons. However, since the energy scale of the crystal-electric-field (CEF) splitting,
Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devils staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a numb
The devils staircase is a term used to describe surface or an equilibrium phase diagram in which various ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example is a 1-D Ising model [bak] wherei
The temperature ($T$) - magnetic field ($H$) phase diagram for the tetragonal layered compound CeSbSe, is determined from magnetization, specific heat, and electrical resistivity measurements. This system exhibits complex magnetic ordering at $T_{rm{