ﻻ يوجد ملخص باللغة العربية
Physical properties of polycrystalline CeCrGe$_{3}$ and LaCrGe$_{3}$ have been investigated by x-ray absorption spectroscopy, magnetic susceptibility $chi(T)$, isothermal magnetization M(H), electrical resistivity $rho(T)$, specific heat C($T$) and thermoelectric power S($T$) measurements. These compounds are found to crystallize in the hexagonal perovskite structure (space group textit{P6$_{3}$/mmc}), as previously reported. The $rho(T)$, $chi(T)$ and C($T$) data confirm the bulk ferromagnetic ordering of itinerant Cr moments in LaCrGe$_{3}$ and CeCrGe$_{3}$ with $T_{C}$ = 90 K and 70 K respectively. In addition a weak anomaly is also observed near 3 K in the C($T$) data of CeCrGe$_{3}$. The T dependences of $rho$ and finite values of Sommerfeld coefficient $gamma$ obtained from the specific heat measurements confirm that both the compounds are of metallic character. Further, the $T$ dependence of $rho$ of CeCrGe$_{3}$ reflects a Kondo lattice behavior. An enhanced $gamma$ of 130 mJ/mol,K$^{2}$ together with the Kondo lattice behavior inferred from the $rho(T)$ establish CeCrGe$_{3}$ as a moderate heavy fermion compound with a quasi-particle mass renormalization factor of $sim$ 45.
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic
We report that nonmagnetic heavy-fermion (HF) iron oxypnictide CeFePO with two-dimensional XY-type anisotropy shows a metamagnetic behavior at the metamagnetic field H_M simeq 4 T perpendicular to the c-axis and that a critical behavior is observed a
We report the thermodynamic, magnetic, and electronic transport properties of the new ternary intermetallic system (Ce,La)3Pt4In13. Ce3Pt4In13 orders antiferromagnetically at 0.95 K while the non-magnetic compound La3Pt4In13 is a conventional 3.3 K s
We report measurements of inelastic neutron scattering, magnetic susceptibility, magnetization, and the magnetic field dependence of the specific heat for the heavy Fermion compounds Ce$_3$In and Ce$_3$Sn. The neutron scattering results show that the
Strong electron correlations can give rise to extraordinary properties of metals with renormalized quasiparticles which are at the basis of Landaus Fermi liquid theory. Near a quantum critical point, these quasiparticles can be destroyed and non-Ferm