ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of superconductivity in PrFe1-xCoxAsO with x = 0.0 to 1.0

66   0   0.0 ( 0 )
 نشر من قبل Veer Awana Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the synthesis and physical property characterization of PrFe1-xCoxAsO with x = 0.0 to 1.0. The studied samples are synthesized by solid state reaction route via vacuum encapsulation method. The pristine compound PrFeAsO does not show superconductivity, but rather exhibits a metallic step like transition due to spin density wave ordering of Fe moments below 150 K, followed by another upward step due to anomalous ordering of Pr moments at 12 K. Both the Fe-SDW and Pr-TN temperatures decrease monotonically with Co substitution at Fe site. Superconductivity appears in a narrow range of x from 0.07 to 0.25 with maximum Tc at 11.12 K for x = 0.15. Samples, with x = 0.25 exhibit metallic behavior right from 300 K down to 2 K, without any Fe-SDW or Pr-TN steps in resistivity. In fact, though Fe-SDW decreases monotonically, the Pr-TN is disappeared even with x = 0.02. The magneto transport measurements below 14 Tesla on superconducting polycrystalline Co doped PrFeAsO lead to extrapolated values of the upper critical fields [Hc2(0)] of up to 60 Tesla.

قيم البحث

اقرأ أيضاً

We report synthesis, structural details and magnetization of SmFe1-xCoxAsO with x ranging from 0.0 to 0.30. It is found that Co substitutes fully at Fe site in SmFeAsO in an iso-structural lattice with slightly compressed cell. The parent compound ex hibited known spin density wave (SDW) character below at around 140 K. Successive doping of Co at Fe site suppressed the SDW transition for x = 0.05 and later induced superconductivity for x = 0.10, 0.15 and 0.20 respectively at 14, 15.5 and 9K. The lower critical field as seen from magnetization measurements is below 200Oe. The appearance of bulk superconductivity is established by wide open isothermal magnetization M(H) loops. Superconductivity is not observed for higher content of Co i.e. x = 0.30. Clearly the Co substitution at Fe site in SmFe1-xCoxAsO diminishes the Fe SDW character, introduces bulk superconductivity for x between 0.10 and 0.20 and finally becomes non-superconducting for x above 0.20. The Fe2+ site Co3+ substitution injects mobile electrons to the system and superconductivity appears, however direct substitution introduces simultaneous disorder in superconducting FeAs layer and thus superconductivity disappears for higher content of Co.
We report the experimental results of temperature dependent polarized As K-edge extended x-ray absorption fine structure (EXAFS) of LaFe1-xCoxAsO (x=0.0 and 0.11) single-crystals. By aligning the Fe-As bond direction in the direction of the x-ray bea m polarization we have been able to identify an anomaly in the Fe-As bond correlations at the tetragonal to orthorhombic transition at 150K, while previous investigations with standard unpolarized EXAFS of undoped LaFeAsO powder samples were not able to detect any such anomaly. Using our approach we have been able to identify in the superconducting doped sample, LaFe0.89Co0.11AsO, a broad anomaly around 60 K. The low temperature anomaly has good correlations with the temperature dependence of several properties like resistivity, magnetic susceptibility, linear thermal expansion, etc indicating the emergence of the dynamical oscillations of the Fe - As pairs
Thermoelectric power, S(T) of the Mg1-xAlxB2 system has been measured for x = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. XRD, resistivity and magnetization measurements are also presented. It has been found that the thermoelectric power is positive for x = 0.4 and is negative for x = 0.6 over the entire temperature range studied up to 300 K. The thermoelectric power of x = 0.4 samples vanishes discontinuously below a certain temperature, implying existence of superconductivity. In general, the magnitude of the thermoelectric power increases with temperature up to a certain temperature, and then it starts to decrease towards zero base line. In order to explain the observed behavior of the thermoelectric power, we have used a model in which both diffusion and phonon drag processes are combined by using a phenomenological interpolation between the low and high temperature behaviors of the thermoelectric power. The considered model provides an excellent fit to the observed data. It is further found that Al doping enhances the Debye temperature.
Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPbxBi4-xTe6 (0.3=<x=<1.0) materials, i.e. the first member of the thermoelectric series of Cs[PbmBi3Te5+m], these materials have the layered orthorhombic structu re containing infinite anionic [PbBi3Te6]- slabs separated with Cs+ cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in CsPb0.3Bi3.7Te6 occurs at Tc=3.1K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructural phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material CsPb0.3Bi3.7Te6 with the highest Tc shows a clear ordered structure with a modulation wave vector of q=a*/2+ c*/1.35 on the a-c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors.
The phase diagram of NdFe1-xCoxAsO for low cobalt substitution consists of a superconducting dome (0.05 < x < 0.20) with a maximum critical temperature of 16.5(2) K for x = 0.12. The x = 1 end member, NdCoAsO, is an itinerant ferromagnet (TC = 85 K) with an ordered moment of 0.30(1) BM at 15 K. Below TN = 9 K, Nd spin-ordering results in the antiferromagnetic coupling of the existing ferromagnetic planes. Rietveld analysis reveals that the electronically important two-fold tetrahedral angle increases from 111.4 to 115.9 deg. in this series. Underdoped samples with x = 0.046(2) and x = 0.065(2) show distortions to the orthorhombic Cmma structure at 72(2) and 64(2) K, respectively. The temperature dependences of the critical fields Hc2(T) near Tc are linear with almost identical slopes of 2.3(1) T K-1 for x = 0.065(2), x = 0.118(2) and x = 0.172(2). The estimated critical field Hc2(0) and correlation length for optimally doped samples are 26(1) T and 36(1) Angstrom. A comparison of the maximum reported critical temperatures of well-characterized cobalt doped 122- and 1111-type superconductors is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا