ﻻ يوجد ملخص باللغة العربية
The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (state of knowledge) or an ontic state (state of reality)? In realist models of quantum theory, the epistemic view asserts that nonorthogonal quantum states correspond to overlapping probability measures over the true ontic states. This naturally accounts for a large number of otherwise puzzling quantum phenomena. For example, the indistinguishability of nonorthogonal states is explained by the fact that the ontic state sometimes lies in the overlap region, in which case there is nothing in reality that could distinguish the two states. For this to work, the amount of overlap of the probability measures should be comparable to the indistinguishability of the quantum states. In this letter, I exhibit a family of states for which the ratio of these two quantities must be $leq 2de^{-cd}$ in Hilbert spaces of dimension $d$ that are divisible by $4$. This implies that, for large Hilbert space dimension, the epistemic explanation of indistinguishability becomes implausible at an exponential rate as the Hilbert space dimension increases.
We study the extent to which psi-epistemic models for quantum measurement statistics---models where the quantum state does not have a real, ontic status---can explain the indistinguishability of nonorthogonal quantum states. This is done by comparing
A quantum ensemble ${(p_x, rho_x)}$ is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum c
In this paper, we mainly study the local distinguishable multipartite quantum states by local operations and classical communication (LOCC) in $m_1otimes m_2otimesldotsotimes m_n$ , where the quantum system $m_1$ belongs to Alice, $m_2$ belongs to Bo
In this article, we show a sufficient and necessary condition for locally distinguishable bipartite states via one-way local operations and classical communication (LOCC). With this condition, we present some minimal structures of one-way LOCC indist
We consider the distinguishability of Gaussian states from the view point of continuous-variable quantum cryptography using post-selection. Specifically, we use the probability of error to distinguish between two pure coherent (squeezed) states and t