ترغب بنشر مسار تعليمي؟ اضغط هنا

Langevin spin dynamics based on ab initio calculations: numerical schemes and applications

127   0   0.0 ( 0 )
 نشر من قبل Levente R\\'ozsa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A method is proposed to study the finite-temperature behaviour of small magnetic clusters based on solving the stochastic Landau-Lifshitz-Gilbert equations, where the effective magnetic field is calculated directly during the solution of the dynamical equations from first principles instead of relying on an effective spin Hamiltonian. Different numerical solvers are discussed in the case of a one-dimensional Heisenberg chain with nearest-neighbour interactions. We performed detailed investigations for a monatomic chain of ten Co atoms on top of Au(001) surface. We found a spiral-like ground state of the spins due to Dzyaloshinsky-Moriya interactions, while the finite-temperature magnetic behaviour of the system was well described by a nearest-neighbour Heisenberg model including easy-axis anisotropy.



قيم البحث

اقرأ أيضاً

A set of general constructing schemes is unveiled to predict a large family of stable boron monoelemental, hollow fullerenes with magic numbers 32+8k (k>=0). The remarkable stabilities of these new boron fullerenes are then studied by intense ab init io calculations. An electron counting rule as well as an isolated hollow rule are proposed to readily show the high stability and the electronic bonding property, which are also revealed applicable to a number of newly predicted boron sheets and nanotubes.
Spin relaxation and decoherence is at the heart of spintronics and spin-based quantum information science. Currently, theoretical approaches that can accurately predict spin relaxation of general solids including necessary scattering pathways and cap able for ns to ms simulation time are urgently needed. We present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast spin dynamics for general solid-state systems. Through the complete first-principles descriptions of pump, probe and scattering processes including electron-phonon, electron-impurity and electron-electron scatterings with self-consistent spin-orbit couplings, our method can directly simulate the ultrafast pump-probe measurements for coupled spin and electron dynamics over ns at any temperature and doping levels. We apply this method to a prototypical system GaAs and obtain excellent agreement with experiments. We found that the relative contributions of different scattering mechanisms and phonon modes differ considerably between spin and carrier relaxation processes. In sharp contrast to previous work based on model Hamiltonians, we point out that the electron-electron scattering is negligible at room temperature but becomes very important at low temperatures for spin relaxation in n-type GaAs. Most importantly, we examine the applicable conditions of the commonly-used Dyakonov-Perel relation, which may break down for individual scattering processes. Our work provides a predictive computational platform for spin relaxation in solids, which has unprecedented potentials for designing new materials ideal for spintronics and quantum information technology.
Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. Its well known that many porphyrins have transition metal atoms, and we have explored transition metal atoms bonded to those porphyrin-like defects in N-doped c arbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Greens functions methods. The results determined the Heme B-like defect (an iron atom bonded to four nitrogens) as the most stable and with a higher polarization current for a single defect. With randomly positioned Heme B-defects in a few hundred nanometers long nanotubes the polarization reaches near 100% meaning an effective spin filter. A disorder induced magnetoresistance effect is also observed in those long nanotubes, values as high as 20000% are calculated with non-magnectic eletrodes.
We develop a theoretical and computational framework to study polarons in semiconductors and insulators from first principles. Our approach provides the formation energy, excitation energy, and wavefunction of both electron and hole polarons, and tak es into account the coupling of the electron or hole to all phonons. An important feature of the present method is that it does not require supercell calculations, and relies exclusively on electron band structures, phonon dispersions, and electron-phonon matrix elements obtained from calculations in the crystal unit cell. Starting from the Kohn-Sham (KS) equations of density-functional theory, we formulate the polaron problem as a variational minimization, and we obtain a nonlinear eigenvalue problem in the basis of KS states and phonon eigenmodes. In our formalism the electronic component of the polaron is expressed as a coherent superposition of KS states, in close analogy with the solution of the Bethe-Salpeter equation for the calculation of excitons. We demonstrate the power of the methodology by studying polarons in LiF and Li2O2. We show that our method describes both small and large polarons, and seamlessly captures Frohlich-type polar electron-phonon coupling and non-Frohlich coupling to acoustic and optical phonons. To analyze in quantitative terms the electron-phonon coupling mechanisms leading to the formation of polarons, we introduce spectral decompositions similar to the Eliashberg spectral function. We validate our theory using both analytical results and direct calculations on large supercells. This study constitutes a first step toward complete ab initio many-body calculations of polarons in real materials.
The spin Hall effect (SHE) is an important spintronics phenomenon, which allows transforming a charge current into a spin current and vice versa without the use of magnetic materials or magnetic fields. To gain new insight into the physics of the SHE and to identify materials with a substantial spin Hall conductivities (SHC), we performed high-precision, high-throughput ab initio electronic structure calculations of the intrinsic SHC for over 20,000 non-magnetic crystals. The calculations reveal a strong and unexpected relation of the magnitude of the SHC with the crystalline symmetry, which we show exists because large SHC is typically associated with mirror symmetry protected nodal lines in the band structure. From the new developed database, we identify new promising materials. This includes eleven materials with a SHC comparable or even larger than that the up to now record Pt as well as materials with different types of spin currents, which could allow for new types of spin-obitronics devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا