ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-filtering and Disorder Induced Giant Magnetoresistance in Carbon Nanotubes: Ab Initio Calculations

120   0   0.0 ( 0 )
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. Its well known that many porphyrins have transition metal atoms, and we have explored transition metal atoms bonded to those porphyrin-like defects in N-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Greens functions methods. The results determined the Heme B-like defect (an iron atom bonded to four nitrogens) as the most stable and with a higher polarization current for a single defect. With randomly positioned Heme B-defects in a few hundred nanometers long nanotubes the polarization reaches near 100% meaning an effective spin filter. A disorder induced magnetoresistance effect is also observed in those long nanotubes, values as high as 20000% are calculated with non-magnectic eletrodes.



قيم البحث

اقرأ أيضاً

A method is proposed to study the finite-temperature behaviour of small magnetic clusters based on solving the stochastic Landau-Lifshitz-Gilbert equations, where the effective magnetic field is calculated directly during the solution of the dynamica l equations from first principles instead of relying on an effective spin Hamiltonian. Different numerical solvers are discussed in the case of a one-dimensional Heisenberg chain with nearest-neighbour interactions. We performed detailed investigations for a monatomic chain of ten Co atoms on top of Au(001) surface. We found a spiral-like ground state of the spins due to Dzyaloshinsky-Moriya interactions, while the finite-temperature magnetic behaviour of the system was well described by a nearest-neighbour Heisenberg model including easy-axis anisotropy.
We study the thermodynamics of bromophenyl functionalization of carbon nanotubes with respect to diameter and metallic/insulating character using density-functional theory (DFT). On one hand, we show that the activation energy for the grafting of a b romophenyl molecule onto a semiconducting zigzag nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to diameter within numerical accuracy. On the other hand, the binding energy of a single bromophenyl molecule shows a clear diameter dependence and ranges from 1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube. This is in part explained by the transition from sp2 to sp3 bonding occurring to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that smaller nanotubes are closer to a sp3 hybridization than larger ones due to increased curvature. Since a second bromophenyl unit can attach without energy barrier next to an isolated grafted unit, they are assumed to exist in pairs. The para configuration is found to be favored for the pairs and their binding energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0) nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius dependence is derived using a tight binding hamiltonian and first order perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube radius) is verified by our DFT results within numerical accuracy. Finally, metallic nanotubes are found to be more reactive than semiconducting nanotubes, a feature that can be explained by a non-zero density of states at the Fermi level for metallic nanotubes.
The spin Hall effect (SHE) is an important spintronics phenomenon, which allows transforming a charge current into a spin current and vice versa without the use of magnetic materials or magnetic fields. To gain new insight into the physics of the SHE and to identify materials with a substantial spin Hall conductivities (SHC), we performed high-precision, high-throughput ab initio electronic structure calculations of the intrinsic SHC for over 20,000 non-magnetic crystals. The calculations reveal a strong and unexpected relation of the magnitude of the SHC with the crystalline symmetry, which we show exists because large SHC is typically associated with mirror symmetry protected nodal lines in the band structure. From the new developed database, we identify new promising materials. This includes eleven materials with a SHC comparable or even larger than that the up to now record Pt as well as materials with different types of spin currents, which could allow for new types of spin-obitronics devices.
{it Ab initio} investigations of the full static dielectric response and Born effective charge of BN nanotubes (BN-NTs) have been performed for the first time using finite electric field method. It is found that the ionic contribution to the static d ielectric response of BN-NTs is substantial and also that a pronounced chirality-dependent oscillation is superimposed on the otherwise linear relation between the longitudinal electric polarizability and the tube diameter ($D$), as for a thin dielectric cylinderical shell. In contrast, the transverse dielectric response of the BN-NTs resemble the behavior of a thin (non-ideal) conducting cylindrical shell of a diameter of $D+4$AA$ $, with a screening factor of 2 for the inner electric field. The medium principal component $Z_y^*$ of the Born effective charge corresponding to the transverse atomic displacement tangential to the BN-NT surface, has a pronounced $D$-dependence (but independent of chirality), while the large longitudinal component $Z_z^*$ exhibits a clear chirality dependence (but nearly $D$-independent), suggesting a powerful way to characterize the diameter and chirality of a BN-NT.
148 - L. D. Marks , D. R. Luke 2008
We study the general problem of mixing for ab-initio quantum-mechanical problems. Guided by general mathematical principles and the underlying physics, we propose a multisecant form of Broydens second method for solving the self-consistent field equa tions of Kohn-Sham density functional theory. The algorithm is robust, requires relatively little finetuning and appears to outperform the current state of the art, converging for cases that defeat many other methods. We compare our technique to the conventional methods for problems ranging from simple to nearly pathological.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا