ترغب بنشر مسار تعليمي؟ اضغط هنا

A cosmic web filament revealed in Lyman-alpha emission around a luminous high-redshift quasar

139   0   0.0 ( 0 )
 نشر من قبل Sebastiano Cantalupo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulations of structure formation in the Universe predict that galaxies are embedded in a cosmic web, where the majority of baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-alpha emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at z=2.3. With a projected size of approximately 460 physical kpc, the Lyman-alpha emission surrounding the radio-quiet quasar UM287 extends well beyond the virial radius of any plausible associated dark matter halo. The estimated cold gas mass of the nebula from the observed emission is at least ten times larger than what is typically found by cosmological simulations, suggesting that a population of intergalactic gas clumps with sub-kpc sizes may be missing within current numerical models.

قيم البحث

اقرأ أيضاً

We trace the cosmic web at redshifts 1.0 <= z <= 1.8 using the quasar data from the SDSS DR7 QSO catalogue (Schneider et al. 2010). We apply a friend-of-friend (FoF) algorithm to the quasar and random catalogues to determine systems at a series of li nking lengths, and analyse richness and sizes of these systems. At the linking lengths l <= 30 Mpc/h the number of quasar systems is larger than the number of systems detected in random catalogues, and systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe, the richest quasar systems have four members. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 <= l <= 70 Mpc/h) the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. At the linking length 70 Mpc/h the richest systems of quasars have diameters exceeding 500 Mpc/h. The percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples (85 Mpc/h). Quasar luminosities in systems are not correlated with the system richness. Quasar system catalogues at our web pages http://www.aai.ee/~maret/QSOsystems.html serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.
Cosmological simulations suggest that most of the matter in the Universe is distributed along filaments connecting galaxies. Illuminated by the cosmic UV background (UVB), these structures are expected to glow in fluorescent Lyman alpha emission with a Surface Brightness (SB) that is well below current observational limits for individual detections. Here, we perform a stacking analysis of the deepest MUSE/VLT data using three-dimensional regions (subcubes) with orientations determined by the position of neighbouring Lyman alpha galaxies (LAEs) at 3<z<4. Our method should increase the probability of detecting filamentary Lyman alpha emission, provided that these structures are Lyman Limit Systems (LLSs). By stacking 390 oriented subcubes we reach a 2 sigma sensitivity level of SB ~ 0.44e-20 erg/s/cm^2/arcsec^2 in an aperture of 1 arcsec^2 x 6.25 Angstrom, which is three times below the expected fluorescent Lyman alpha signal from the Haardt-Madau 2012 (HM12) UVB at z~3.5. No detectable emission is found on intergalactic scales, implying that at least two thirds of our subcubes do not contain oriented LLSs for a HM12 UVB. On the other hand, significant emission is detected in the circum-galactic medium (CGM) of galaxies in the direction of the neighbours. The signal is stronger for galaxies with a larger number of neighbours and appears to be independent of any other galaxy properties such as luminosity, redshift and neighbour distance. We estimate that preferentially oriented satellite galaxies cannot contribute significantly to this signal, suggesting instead that gas densities in the CGM are typically larger in the direction of neighbouring galaxies on cosmological scales.
In an effort to search for Ly$alpha$ emission from circum- and intergalactic gas on scales of hundreds of kpc around $zsim3$ quasars, and thus characterise the physical properties of the gas in emission, we have initiated an extensive fast-survey wit h the Multi Unit Spectroscopic Explorer (MUSE): Quasar Snapshot Observations with MUse: Search for Extended Ultraviolet eMission (QSO MUSEUM). In this work, we report the discovery of an enormous Ly$alpha$ nebula (ELAN) around the quasar SDSS~J102009.99+104002.7 at $z=3.164$, which we followed-up with deeper MUSE observations. This ELAN spans $sim297$ projected kpc, has an average Ly$alpha$ surface brightness ${rm SB}_{rm Lyalpha}sim 6.04times10^{-18}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ (within the $2sigma$ isophote), and is associated with an additional four, previously unknown embedded sources: two Ly$alpha$ emitters and two faint active galactic nuclei (one Type-1 and one Type-2 quasar). By mapping at high significance the line-of-sight velocity in the entirety of the observed structure, we unveiled a large-scale coherent rotation-like pattern spanning $sim300$ km s$^{-1}$ with a velocity dispersion of $<270$ km s$^{-1}$, which we interpret as a signature of the inspiraling accretion of substructures within the quasars host halo. Future multiwavelength data will complement our MUSE observations, and are definitely needed to fully characterise such a complex system. None the less, our observations reveal the potential of new sensitive integral-field spectrographs to characterise the dynamical state of diffuse gas on large scales in the young Universe, and thereby witness the assembly of galaxies.
We report the detection of extended Ly alpha emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1sigma) of ~1 x 10^-19 erg s^-1 cm^-2 arcsec^-2 in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Ly alpha-emitting, but mostly continuum-faint (m_AB >~ 27) galaxies. In most objects the Ly alpha emission is considerably more extended than the UV continuum light. While 5 of the faintest galaxies in the sample show no significantly detected Ly alpha haloes, the derived upper limits suggest that this is just due to insufficient S/N. Ly alpha haloes therefore appear to be (nearly) ubiquitous even for low-mass (~10^8-10^9 M_sun) star-forming galaxies at z>3. We decompose the Ly alpha emission of each object into a compact `continuum-like and an extended halo component, and infer sizes and luminosities of the haloes. The extended Ly alpha emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor ~5, than Ly alpha haloes around low-redshift star-forming galaxies. Between ~40% and >90% of the observed Ly alpha flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Ly alpha halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.
Mapping the intergalactic medium (IGM) in Lyman-$alpha$ emission would yield unprecedented tomographic information on the large-scale distribution of baryons and potentially provide new constraints on the UV background and various feedback processes relevant to galaxy formation. Here, we use a cosmological hydrodynamical simulation to examine the Lyman-$alpha$ emission of the IGM due to collisional excitations and recombinations in the presence of a UV background. We focus on gas in large-scale-structure filaments in which Lyman-$alpha$ radiative transfer effects are expected to be moderate. At low density the emission is primarily due to fluorescent re-emission of the ionising UV background due to recombinations, while collisional excitations dominate at higher densities. We discuss prospects of current and future observational facilities to detect this emission and find that the emission of filaments of the cosmic web will typically be dominated by the halos and galaxies embedded in them, rather than by the lower density filament gas outside halos. Detecting filament gas directly would require a very long exposure with a MUSE-like instrument on the ELT. Our most robust predictions that act as lower limits indicate this would be slightly less challenging at lower redshifts ($z lesssim 4$). We also find that there is a large amount of variance between fields in our mock observations. High-redshift protoclusters appear to be the most promising environment to observe the filamentary IGM in Lyman-$alpha$ emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا