ﻻ يوجد ملخص باللغة العربية
Mapping the intergalactic medium (IGM) in Lyman-$alpha$ emission would yield unprecedented tomographic information on the large-scale distribution of baryons and potentially provide new constraints on the UV background and various feedback processes relevant to galaxy formation. Here, we use a cosmological hydrodynamical simulation to examine the Lyman-$alpha$ emission of the IGM due to collisional excitations and recombinations in the presence of a UV background. We focus on gas in large-scale-structure filaments in which Lyman-$alpha$ radiative transfer effects are expected to be moderate. At low density the emission is primarily due to fluorescent re-emission of the ionising UV background due to recombinations, while collisional excitations dominate at higher densities. We discuss prospects of current and future observational facilities to detect this emission and find that the emission of filaments of the cosmic web will typically be dominated by the halos and galaxies embedded in them, rather than by the lower density filament gas outside halos. Detecting filament gas directly would require a very long exposure with a MUSE-like instrument on the ELT. Our most robust predictions that act as lower limits indicate this would be slightly less challenging at lower redshifts ($z lesssim 4$). We also find that there is a large amount of variance between fields in our mock observations. High-redshift protoclusters appear to be the most promising environment to observe the filamentary IGM in Lyman-$alpha$ emission.
Cosmological simulations suggest that most of the matter in the Universe is distributed along filaments connecting galaxies. Illuminated by the cosmic UV background (UVB), these structures are expected to glow in fluorescent Lyman alpha emission with
The standard cosmological model ($Lambda$CDM) predicts the existence of the cosmic web: a distribution of matter into sheets and filaments connecting massive halos. However, observational evidence has been elusive due to the low surface brightness of
The intensity of the Cosmic UV background (UVB), coming from all sources of ionising photons such as star-forming galaxies and quasars, determines the thermal evolution and ionization state of the intergalactic medium (IGM) and is, therefore, a criti
Simulations of structure formation in the Universe predict that galaxies are embedded in a cosmic web, where the majority of baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against backgroun
Reconstruction techniques for intrinsic quasar continua are crucial for the precision study of Lyman-$alpha$ (Ly-$alpha$) and Lyman-$beta$ (Ly-$beta$) transmission at $z>5.0$, where the $lambda<1215 A$ emission of quasars is nearly completely absorbe