ﻻ يوجد ملخص باللغة العربية
We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset, and statically trade European call options for all possible strikes with some given maturity. This problem is classically approached by means of the Skorohod Embedding Problem (SEP). Instead, we provide a dual formulation which converts the superhedging problem into a continuous martingale optimal transportation problem. We then show that this formulation allows us to recover previously known results about lookback options. In particular, our methodology induces a new proof of the optimality of Az{e}ma-Yor solution of the SEP for a certain class of lookback options. Unlike the SEP technique, our approach applies to a large class of exotics and is suitable for numerical approximation techniques.
The goal of this paper is to prove a result conjectured in Follmer and Schachermayer [FS07], even in slightly more general form. Suppose that S is a continuous semimartingale and satisfies a large deviations estimate; this is a particular growth cond
We study the stochastic solution to a Cauchy problem for a degenerate parabolic equation arising from option pricing. When the diffusion coefficient of the underlying price process is locally Holder continuous with exponent $deltain (0, 1]$, the stoc
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves
In Liang et al (2009), the current authors demonstrated that BSDEs can be reformulated as functional differential equations, and as an application, they solved BSDEs on general filtered probability spaces. In this paper the authors continue the study
We study two-dimensional stochastic differential equations (SDEs) of McKean--Vlasov type in which the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. Such S