ترغب بنشر مسار تعليمي؟ اضغط هنا

The Agile Alert System For Gamma-Ray Transients

119   0   0.0 ( 0 )
 نشر من قبل Andrea Bulgarelli
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.

قيم البحث

اقرأ أيضاً

The AGILE Science Alert System has been developed to provide prompt processing of science data for detection and alerts on gamma-ray galactic and extra galactic transients, gamma-ray bursts, X-ray bursts and other transients in the hard X-rays. The s ystem is distributed among the AGILE Data Center (ADC) of the Italian Space Agency (ASI), Frascati (Italy), and the AGILE Team Quick Look sites, located at INAF/IASF Bologna and INAF/IASF Roma. We present the Alert System architecture and performances in the first 2 years of operation of the AGILE payload.
The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.
The observation of Very High Energy gamma rays (VHE, E > 100 GeV) led us to the identification of extremely energetic processes and particle acceleration sites both within our Galaxy and beyond. We expect that VHE facilities, like CTA, will explore t hese sources with an unprecedented level of detail. However, the transient and unpredictable nature of many important processes requires the development of proper monitoring strategies, to observe them. With this study, we estimate the properties of VHE transients that can be effectively detected by monitoring facilities. We use data collected by the Fermi-LAT instrument, during its monitoring campaign, to select events that are likely associated with VHE emission. We use this sample to estimate the frequency, the luminosity and the time-scales of different transients, focusing on blazar flares and Gamma Ray Bursts (GRBs). We discuss how the balance between Field of View, sensitivity and duty cycle of an observatory affects the likelihood to detect transients that occur at the inferred rates and we conclude describing the contribution that current and near-future monitoring facilities can bring to the identification and study of VHE transient emission.
The HAWC collaboration has recently completed the construction of a gamma-ray observatory at an altitude of 4100 meters on the slope of the Sierra Negra volcano in the state of Puebla, Mexico. In order to achieve an optimal angular resolution, energy reconstruction, and cosmic-ray background suppression for the air showers observed by HAWC, it is crucial to obtain good timing and charge calibrations of the photosensors in the detector. The HAWC calibration is based on a laser system which is able to deliver short light pulses to all the tanks in the array. The light intensity can range over 7 orders of magnitude, broad enough to cover all the dynamic range of the PMT readout electronics. In this contribution we will present the HAWC calibration system, together with the methods used to calibrate the detector.
We present the first version of the ALeRCE (Automatic Learning for the Rapid Classification of Events) broker light curve classifier. ALeRCE is currently processing the Zwicky Transient Facility (ZTF) alert stream, in preparation for the Vera C. Rubi n Observatory. The ALeRCE light curve classifier uses variability features computed from the ZTF alert stream, and colors obtained from AllWISE and ZTF photometry. We apply a Balanced Random Forest algorithm with a two-level scheme, where the top level classifies each source as periodic, stochastic, or transient, and the bottom level further resolves each of these hierarchical classes, amongst 15 total classes. This classifier corresponds to the first attempt to classify multiple classes of stochastic variables (including core- and host-dominated active galactic nuclei, blazars, young stellar objects, and cataclysmic variables) in addition to different classes of periodic and transient sources, using real data. We created a labeled set using various public catalogs (such as the Catalina Surveys and {em Gaia} DR2 variable stars catalogs, and the Million Quasars catalog), and we classify all objects with $geq6$ $g$-band or $geq6$ $r$-band detections in ZTF (868,371 sources as of 2020/06/09), providing updated classifications for sources with new alerts every day. For the top level we obtain macro-averaged precision and recall scores of 0.96 and 0.99, respectively, and for the bottom level we obtain macro-averaged precision and recall scores of 0.57 and 0.76, respectively. Updated classifications from the light curve classifier can be found at the href{http://alerce.online}{ALeRCE Explorer website}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا