ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of VHE gamma-ray transients with monitoring facilities

100   0   0.0 ( 0 )
 نشر من قبل Giovanni La Mura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observation of Very High Energy gamma rays (VHE, E > 100 GeV) led us to the identification of extremely energetic processes and particle acceleration sites both within our Galaxy and beyond. We expect that VHE facilities, like CTA, will explore these sources with an unprecedented level of detail. However, the transient and unpredictable nature of many important processes requires the development of proper monitoring strategies, to observe them. With this study, we estimate the properties of VHE transients that can be effectively detected by monitoring facilities. We use data collected by the Fermi-LAT instrument, during its monitoring campaign, to select events that are likely associated with VHE emission. We use this sample to estimate the frequency, the luminosity and the time-scales of different transients, focusing on blazar flares and Gamma Ray Bursts (GRBs). We discuss how the balance between Field of View, sensitivity and duty cycle of an observatory affects the likelihood to detect transients that occur at the inferred rates and we conclude describing the contribution that current and near-future monitoring facilities can bring to the identification and study of VHE transient emission.



قيم البحث

اقرأ أيضاً

Gamma-ray Bursts (GRB) were discovered by satellite-based detectors as powerful sources of transient $gamma$-ray emission. The Fermi satellite detected an increasing number of these events with its dedicated Gamma-ray Burst Monitor (GBM), some of whi ch were associated with high energy photons $(E > 10, mathrm{GeV})$, by the Large Area Telescope (LAT). More recently, follow-up observations by Cherenkov telescopes detected very high energy emission $(E > 100, mathrm{GeV})$ from GRBs, opening up a new observational window with implications on the interpretation of their central engines and on the propagation of very energetic photons across the Universe. Here, we use the data published in the 2nd Fermi-LAT Gamma Ray Burst Catalogue to characterise the duration, luminosity, redshift and light curve of the high energy GRB emission. We extrapolate these properties to the very high energy domain, comparing the results with available observations and with the potential of future instruments. We use observed and simulated GRB populations to estimate the chances of detection with wide-field ground-based $gamma$-ray instruments. Our analysis aims to evaluate the opportunities of the Southern Wide-field-of-view Gamma-ray Observatory (SWGO), to be installed in the Southern Hemisphere, to complement CTA. We show that a low-energy observing threshold $(E_{low} < 200, mathrm{GeV})$, with good point source sensitivity $(F_{lim} approx 10^{-11}, mathrm{erg, cm^{-2}, s^{-1}}$ in $1, mathrm{yr})$, are optimal requirements to work as a GRB trigger facility and to probe the burst spectral properties down to time scales as short as $10, mathrm{s}$, accessing a time domain that will not be available to IACT instruments.
91 - G. La Mura 2021
It has been established that Gamma-Ray Bursts (GRB) can produce Very High Energy radiation (E > 100 GeV), opening a new window on the investigation of particle acceleration and radiation properties in the most energetic domain. We expect that next-ge neration instruments, such as the Cherenkov Telescope Array (CTA), will mark a huge improvement in their observation. However, constraints on the target visibility and the limited duty cycle of Imaging Atmospheric Cherenkov Telescopes (IACT) reduce their ability to react promptly to transient events and to characterise their general properties. Here we show that an instrument based on the Extensive Air Shower (EAS) array concept, proposed by the Southern Wide Field-of-view Gamma-ray Observatory (SWGO) Collaboration, has promising possibilities to detect and track VHE emission from GRBs. Observations made by the Fermi Large Area Telescope (Fermi-LAT) identified some events with a distinct spectral component, extending above $1,$GeV or even $10,$GeV, which can represent a substantial fraction of the emitted energy and also arise in early stages of the process. Using models based on these properties, we estimate the possibilities that a wide field of view and large effective area ground-based monitoring facility has to probe VHE emission from GRBs. We show that the ability to monitor VHE transients with a nearly continuous scanning of the sky grants an opportunity to access simultaneous electromagnetic counterparts to Multi-Messenger triggers up to cosmological scales, in a way that is not available to IACTs.
In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.
136 - P. Abreu , A. Albert , R. Alfaro 2019
We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field coverage of a large portion of the southern sky, effectively complementing current and future instruments in the global multi-messenger effort to understand extreme astrophysical phenomena throughout the universe. A detailed description of science topics addressed by SWGO is available in the science case white paper [1]. The development of SWGO will draw on extensive experience within the community in designing, constructing, and successfully operating wide-field instruments using observations of extensive air showers. The detector will consist of a compact inner array of particle detection units surrounded by a sparser outer array. A key advantage of the design of SWGO is that it can be constructed using current, already proven technology. We estimate a construction cost of 54M USD and a cost of 7.5M USD for 5 years of operation, with an anticipated US contribution of 20M USD ensuring that the US will be a driving force for the SWGO effort. The recently formed SWGO collaboration will conduct site selection and detector optimization studies prior to construction, with full operations foreseen to begin in 2026. Throughout this document, references to science white papers submitted to the Astro2020 Decadal Survey with particular relevance to the key science goals of SWGO, which include unveiling Galactic particle accelerators [2-10], exploring the dynamic universe [11-21], and probing physics beyond the Standard Model [22-25], are highlighted in red boldface.
The Wide Field X-ray Telescope (WFXT) is a proposed mission with a high survey speed, due to the combination of large field of view (FOV) and effective area, i.e. grasp, and sharp PSF across the whole FOV. These characteristics make it suitable to de tect a large number of variable and transient X-ray sources during its operating lifetime. Here we present estimates of the WFXT capabilities in the time domain, allowing to study the variability of thousand of AGNs with significant detail, as well as to constrain the rates and properties of hundreds of distant, faint and/or rare objects such as X-ray Flashes/faint GRBs, Tidal Disruption Events, ULXs, Type-I bursts etc. The planned WFXT extragalactic surveys will thus allow to trace variable and transient X-ray populations over large cosmological volumes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا