ﻻ يوجد ملخص باللغة العربية
To be habitable, a world (planet or moon) does not need to be located in the stellar habitable zone (HZ), and worlds in the HZ are not necessarily habitable. Here, we illustrate how tidal heating can render terrestrial or icy worlds habitable beyond the stellar HZ. Scientists have developed a language that neglects the possible existence of worlds that offer more benign environments to life than Earth does. We call these objects superhabitable and discuss in which contexts this term could be used, that is to say, which worlds tend to be more habitable than Earth. In an appendix, we show why the principle of mediocracy cannot be used to logically explain why Earth should be a particularly habitable planet or why other inhabited worlds should be Earth-like. Superhabitable worlds must be considered for future follow-up observations of signs of extraterrestrial life. Considering a range of physical effects, we conclude that they will tend to be slightly older and more massive than Earth and that their host stars will likely be K dwarfs. This makes Alpha Centauri B, member of the closest stellar system to the Sun that is supposed to host an Earth-mass planet, an ideal target for searches of a superhabitable world.
Although tidally-locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheri
In an attempt to select stars that can host planets with characteristics similar to our own, we selected seven solar-type stars known to host planets in the habitable zone and for which spectroscopic stellar parameters are available. For these stars
Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could probe thei
We investigate a new class of habitable planets composed of water-rich interiors with massive oceans underlying H2-rich atmospheres, referred to here as Hycean worlds. With densities between those of rocky super-Earths and more extended mini-Neptunes
Tidal interactions between planets or stars and the bodies that orbit them dissipate energy in their interiors. The energy dissipated drives internal heating and a fraction of that energy will be released as seismic energy. Here we formalize a model