ترغب بنشر مسار تعليمي؟ اضغط هنا

Vital Signs: Seismology of ocean worlds

61   0   0.0 ( 0 )
 نشر من قبل Steve Vance
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could probe their transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes, and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we describe other possible seismic sources, their associations with science questions constraining habitability, and the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic activity on tidally flexed ocean worlds should occur frequently. Their ices fracture more easily than rocks, and dissipate more tidal energy than the <1 GW of the Moon and Mars. Icy ocean worlds also should create less thermal noise for a due to their greater distance and consequently smaller diurnal temperature variations. They also lack substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of the Moon or Mars.



قيم البحث

اقرأ أيضاً

The structure of the icy shells of ocean worlds is important for understanding the stability of their underlying oceans as it controls the rate at which heat can be transported outward and radiated to space. Future spacecraft exploration of the ocean worlds (e.g., by NASAs Europa Clipper mission) will allow for higher-resolution measurements of gravity and shape than currently available. In this paper, we study the sensitivity of gravity-topography admittance to the structure of icy shells in preparation for future data analysis. An analytical viscous relaxation model is used to predict admittance spectra given different shell structures determined by the temperature-dependent viscosity of a tidally heated, conductive shell. We apply these methods to the ocean worlds of Europa and Enceladus. We find that admittance is sensitive to the mechanisms of topography support at different wavelengths and estimate the required gravity performance to resolve transitions between these mechanisms. We find that the Airy isostatic model is unable to accurately describe admittance universally across all wavelengths when the shell thickness is a significant fraction of bodys radius. Our models suggest that measurements of admittance at low spherical harmonic degrees are more sensitive to thick shells with high tidal dissipation, and may complement ice-penetrating radar measurements in constraining shell thickness. Finally, we find that admittance may be used to constrain the tidal dissipation within the icy shell, which would be complementary to a more demanding measurement of the tidal phase lag.
Highly volcanic exoplanets, which can be variously characterized as lava worlds, magma ocean worlds, or super-Ios are high priority targets for investigation. The term lava world may refer to any planet with extensive surface lava lakes, while the te rm magma ocean world refers to planets with global or hemispherical magma oceans at their surface. Highly volcanic planets, including super-Ios, may simply have large, or large numbers of, active explosive or extrusive volcanoes of any form. They are plausibly highly diverse, with magmatic processes across a wide range of compositions, temperatures, activity rates, volcanic eruption styles, and background gravitational force magnitudes. Worlds in all these classes are likely to be the most characterizable rocky exoplanets in the near future due to observational advantages that stem from their preferential occurrence in short orbital periods and their bright day-side flux in the infrared. Transit techniques should enable a level of characterization of these worlds analogous to hot Jupiters. Understanding processes on highly volcanic worlds is critical to interpret imminent observations. The physical states of these worlds are likely to inform not just geodynamic processes, but also planet formation, and phenomena crucial to habitability. Volcanic and magmatic activity uniquely allows chemical investigation of otherwise spectroscopically inaccessible interior compositions. These worlds will be vital to assess the degree to which planetary interior element abundances compare to their stellar hosts, and may also offer pathways to study both the very young Earth, and the very early form of many silicate planets where magma oceans and surface lava lakes are expected to be more prevalent. We suggest that highly volcanic worlds may become second only to habitable worlds in terms of both scientific and public long-term interest.
The efficacy of sensor data in modern bridge condition evaluations has been undermined by inaccessible technologies. While the links between vibrational properties and structural health have been well established, high costs associated with specializ ed sensor networks have prevented the integration of such data with bridge management systems. In the last decade, researchers predicted that crowd-sourced mobile sensor data, collected ubiquitously and cheaply, will revolutionize our ability to maintain existing infrastructure; yet no such applications have successfully overcome the challenge of extracting useful information in the field with sufficient precision. Here we fill this knowledge gap by showing that critical physical properties of a real bridge can be determined accurately from everyday vehicle trip data. We collected smartphone data from controlled field experiments and UBER rides on the Golden Gate Bridge and developed an analytical method to recover modal properties, which paves the way for scalable, cost-effective structural health monitoring based on this abundant data class. Our results are consistent with a comprehensive study on the Golden Gate Bridge. We assess the benefit of continuous monitoring with reliability models and show that the inclusion of crowd-sourced data in a bridge maintenance plan can add over fourteen years of service (30% increase) to a bridge without additional costs. These results certify the immediate value of large-scale data sources for studying the health of existing infrastructure, whether the data are crowdsensed or generated by organized vehicle fleets such as ridesourcing companies or municipalities.
Seismology was developed on Earth and shaped our model of the Earths interior over the 20th century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.
The 27 satellites of Uranus are enigmatic, with dark surfaces coated by material that could be rich in organics. Voyager 2 imaged the southern hemispheres of Uranus five largest classical moons Miranda, Ariel, Umbriel, Titania, and Oberon, as well as the largest ring moon Puck, but their northern hemispheres were largely unobservable at the time of the flyby and were not imaged. Additionally, no spatially resolved datasets exist for the other 21 known moons, and their surface properties are essentially unknown. Because Voyager 2 was not equipped with a near-infrared mapping spectrometer, our knowledge of the Uranian moons surface compositions, and the processes that modify them, is limited to disk-integrated datasets collected by ground- and space-based telescopes. Nevertheless, images collected by the Imaging Science System on Voyager 2 and reflectance spectra collected by telescope facilities indicate that the five classical moons are candidate ocean worlds that might currently have, or had, liquid subsurface layers beneath their icy surfaces. To determine whether these moons are ocean worlds, and investigate Uranus ring moons and irregular satellites, close-up observations and measurements made by instruments onboard a Uranus orbiter are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا