ﻻ يوجد ملخص باللغة العربية
Energies and spectroscopic factors of the first $7/2^-$, $3/2^-$, $1/2^-$ and $5/2^-$ states in the $^{35}$Si$_{21}$ nucleus were determined by means of the (d,p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the $^{35}$Si and $^{37}$S isotones, a reduction of the $p_{3/2} - p_{1/2}$ spin-orbit splitting by about 25% is proposed, while the $f_{7/2} -f_{5/2}$ spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the 2-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.
The contribution of a chiral three-nucleon force to the strength of an effective spin-orbit coupling is estimated. We first construct a reduced two-body interaction by folding one-nucleon degrees of freedom of the three-nucleon force in nuclear matte
We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for $0.05<Q^{2}<2.92$ GeV$^2$. The integral is fit to extract the twist-4 element $f_{2}^{p-n}$ which appears to be relatively large and negative. Systematic studies of this
The Non-Mesonic (NM) decay of $^4_Lambda{mathrm{He}}$ and $^5_Lambda{mathrm{He}}$ in two-body channels has been studied by the FINUDA Collaboration. Two-body NM decays of hypernuclei are rare and the existing observations and theoretical calculations
We reported a systematic study of spin-orbit torque biased magnetic sensors based on NiFe/Pt bilayers through both macro-spin modeling and experiments. The simulation results show that it is possible to achieve a linear sensor with a dynamic range of
We have measured cross sections for the gamma+3He->p+d reaction at photon energies of 0.4 - 1.4 GeV and a center-of-mass angle of 90 deg. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dime