ترغب بنشر مسار تعليمي؟ اضغط هنا

Compatible finite element methods for numerical weather prediction

165   0   0.0 ( 0 )
 نشر من قبل Colin Cotter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introduction in the case of the one-dimensional wave equation, before summarising recent results in applications to the rotating shallow water equations on the sphere, before taking an outlook towards applications in three-dimensional compressible dynamical cores.



قيم البحث

اقرأ أيضاً

317 - C. J. Cotter , J. Shipton 2011
We show how two-dimensional mixed finite element methods that satisfy the conditions of finite element exterior calculus can be used for the horizontal discretisation of dynamical cores for numerical weather prediction on pseudo-uniform grids. This f amily of mixed finite element methods can be thought of in the numerical weather prediction context as a generalisation of the popular polygonal C-grid finite difference methods. There are a few major advantages: the mixed finite element methods do not require an orthogonal grid, and they allow a degree of flexibility that can be exploited to ensure an appropriate ratio between the velocity and pressure degrees of freedom so as to avoid spurious mode branches in the numerical dispersion relation. These methods preserve several properties of the C-grid method when applied to linear barotropic wave propagation, namely: a) energy conservation, b) mass conservation, c) no spurious pressure modes, and d) steady geostrophic modes on the $f$-plane. We explain how these properties are preserved, and describe two examples that can be used on pseudo-uniform grids: the recently-developed modified RT0-Q0 element pair on quadrilaterals and the BDFM1-pdg element pair on triangles. All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of freedom to pressure degrees of freedom. Finally we illustrate the properties with some numerical examples.
We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The proposed coupling technique requires minimal changes in the existing schemes while maintaining strict stability, accuracy, and energy conservation. Results are demonstrated on linear and nonlinear scalar conservation laws in two spatial dimensions.
We consider two `Classical Boussinesq type systems modelling two-way propagation of long surface waves in a finite channel with variable bottom topography. Both systems are derived from the 1-d Serre-Green-Naghdi (SGN) system; one of them is valid fo r stronger bottom variations, and coincides with Peregrines system, and the other is valid for smaller bottom variations. We discretize in the spatial variable simple initial-boundary-value problems (ibvps) for both systems using standard Galerkin-finite element methods and prove $L^2$ error estimates for the ensuing semidiscrete approximations. We couple the schemes with the 4th order-accurate, explicit, classical Runge-Kutta time-stepping procedure and use the resulting fully discrete methods in numerical simulations of dispersive wave propagation over variable bottoms with several kinds of boundary conditions, including absorbing ones. We describe in detail the changes that solitary waves undergo when evolving under each system over a variety of variable-bottom environments. We assess the efficacy of both systems in approximating these flows by comparing the results of their simulations with each other, with simulations of the SGN-system, and with available experimental data from the literature.
In this paper, we study arbitrary order extended finite element (XFE) methods based on two discontinuous Galerkin (DG) schemes in order to solve elliptic interface problems in two and three dimensions. Optimal error estimates in the piecewise $H^1$-n orm and in the $L^2$-norm are rigorously proved for both schemes. In particular, we have devised a new parameter-friendly DG-XFEM method, which means that no sufficiently large parameters are needed to ensure the optimal convergence of the scheme. To prove the stability of bilinear forms, we derive non-standard trace and inverse inequalities for high-order polynomials on curved sub-elements divided by the interface. All the estimates are independent of the location of the interface relative to the meshes. Numerical examples are given to support the theoretical results.
In this paper, we introduce and analyse a surface finite element discretization of advection-diffusion equations with uncertain coefficients on evolving hypersurfaces. After stating unique solvability of the resulting semi-discrete problem, we prove optimal error bounds for the semi-discrete solution and Monte Carlo samplings of its expectation in appropriate Bochner spaces. Our theoretical findings are illustrated by numerical experiments in two and three space dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا