In this paper, we consider Barnes multiple Bernoulli and poly-Bernoulli mixed-type polynomials. From the properties of Sheffer sequences of these polynomials arising from umbrral calculus, we derive new and interesting identities.
The braid arrangement is the Coxeter arrangement of the type $A_ell$. The Shi arrangement is an affine arrangement of hyperplanes consisting of the hyperplanes of the braid arrangement and their parallel translations. In this paper, we give an explic
it basis construction for the derivation module of the cone over the Shi arrangement. The essential ingredient of our recipe is the Bernoulli polynomials.
We study the interplay between recurrences for zeta related functions at integer values, `Minor Corner Lattice Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald,
the transcendence of the zeta function at odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-characteristic polynomials for zeta related functions. We begin with a recent result for zeta(2s) and some seemingly new Bernoulli relations, which we use to obtain a generalised Ramanujan polynomial and properties thereof.
We determine the Krieger type of nonsingular Bernoulli actions $G curvearrowright prod_{g in G} ({0,1},mu_g)$. When $G$ is abelian, we do this for arbitrary marginal measures $mu_g$. We prove in particular that the action is never of type II$_infty$
if $G$ is abelian and not locally finite, answering Krengels question for $G = mathbb{Z}$. When $G$ is locally finite, we prove that type II$_infty$ does arise. For arbitrary countable groups, we assume that the marginal measures stay away from $0$ and $1$. When $G$ has only one end, we prove that the Krieger type is always I, II$_1$ or III$_1$. When $G$ has more than one end, we show that other types always arise. Finally, we solve the conjecture of [VW17] by proving that a group $G$ admits a Bernoulli action of type III$_1$ if and only if $G$ has nontrivial first $L^2$-cohomology.
We introduce the degenerate Bernoulli numbers of the second kind as a degenerate version of the Bernoulli numbers of the second kind. We derive a family of nonlinear differential equations satisfied by a function closely related to the generating fun
ction for those numbers. We obtain explicit expressions for the coefficients appearing in those differential equations and the degenerate Bernoulli numbers of the second kind. In addition, as an application and from those differential equations we have an identity expressing the degenerate Bernoulli numbers of the second kind in terms of those numbers of higher-orders.