ﻻ يوجد ملخص باللغة العربية
The braid arrangement is the Coxeter arrangement of the type $A_ell$. The Shi arrangement is an affine arrangement of hyperplanes consisting of the hyperplanes of the braid arrangement and their parallel translations. In this paper, we give an explicit basis construction for the derivation module of the cone over the Shi arrangement. The essential ingredient of our recipe is the Bernoulli polynomials.
Let $q$ be a positive integer. In our recent paper, we proved that the cardinality of the complement of an integral arrangement, after the modulo $q$ reduction, is a quasi-polynomial of $q$, which we call the characteristic quasi-polynomial. In this
Let $W$ be a finite Weyl group and $A$ be the corresponding Weyl arrangement. A deformation of $A$ is an affine arrangement which is obtained by adding to each hyperplane $HinA$ several parallel translations of $H$ by the positive root (and its integ
In this article we prove that the ideal-Shi arrangements are free central arrangements of hyperplanes satisfying the dual-partition formula. Then it immediately follows that there exists a saturated free filtration of the cone of any affine Weyl arra
The emph{Shi arrangement} is the set of all hyperplanes in $mathbb R^n$ of the form $x_j - x_k = 0$ or $1$ for $1 le j < k le n$. Shi observed in 1986 that the number of regions (i.e., connected components of the complement) of this arrangement is $(
In his affirmative answer to the Edelman-Reiner conjecture, Yoshinaga proved that the logarithmic derivation modules of the cones of the extended Shi arrangements are free modules. However, all we know about the bases is their existence and degrees.