ترغب بنشر مسار تعليمي؟ اضغط هنا

Robotic Laser-Adaptive-Optics Imaging of 715 Kepler Exoplanet Candidates using Robo-AO

143   0   0.0 ( 0 )
 نشر من قبل Nicholas Law
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Robo-AO Kepler Planetary Candidate Survey is designed to observe every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper we present the results from the 2012 observing season, searching for stars close to 715 representative Kepler planet candidate hosts. We find 53 companions, 44 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from 0.15 to 2.5 separation, with contrast ratios up to delta-m~6. We measure an overall nearby-star-probability for Kepler planet candidates of 7.4% +/- 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several KOIs of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are coincident multiple systems, with several transiting planets shared between the two stars. Finally, we detect 2.6-sigma evidence for <15d-period giant planets being 2-3 times more likely be found in wide stellar binaries than smaller close-in planets and all sizes of further-out planets.



قيم البحث

اقرأ أيضاً

The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficien cy provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15 to 4.0 separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5pm0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their stars habitable zone.
The Robo-AO textit{Kepler} Planetary Candidate Survey is observing every textit{Kepler} planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. We present in this paper the results of our search for stars nearby 1629 textit{Kepler} planet candidate hosts. With survey sensitivity to objects as close as $sim$0.15 and magnitude differences $Delta$m$le$6, we find 223 stars in the vicinity of 206 target KOIs; 209 of these nearby stars have not previously been imaged in high resolution. We measure an overall nearby-star probability for textit{Kepler} planet candidates of 12.6%$pm$0.9% at separations between 0.15 and 4.0. Particularly interesting KOI systems are discussed, including 23 stars with detected companions which host rocky, habitable zone candidates, and five new candidate planet-hosting quadruple star systems. We explore the broad correlations between planetary systems and stellar binarity using the combined dataset of Baranec et al. (2016) and this paper. Our previous 2$sigma$ result of a low binary fraction of KOIs hosting close-in giant planets is less apparent in this larger dataset. We also find a significant correlation between binary fraction and KOI number, suggesting possible variation between early and late textit{Kepler} data releases.
We initiated the Robo-AO Kepler Planetary Candidate Survey in 2012 to observe each Kepler exoplanet candidate host star with high-angular-resolution visible-light laser-adaptive-optics imaging. Our goal is to find nearby stars lying in Keplers photom etric apertures that are responsible for the relatively high probability of false-positive exoplanet detections and that cause underestimates of the size of transit radii. Our comprehensive survey will also shed light on the effects of stellar multiplicity on exoplanet properties and will identify rare exoplanetary architectures. In this second part of our ongoing survey, we observed an additional 969 Kepler planet candidate hosts and we report blended stellar companions up to $Delta m approx 6$ that contribute to Keplers measured light curves. We found 203 companions within $sim$4 of 181 of the Kepler stars, of which 141 are new discoveries. We measure the nearby-star probability for this sample of Kepler planet candidate host stars to be 10.6% $pm$ 1.1% at angular separations up to 2.5, significantly higher than the 7.4% $pm$ 1.0% probability discovered in our initial sample of 715 stars; we find the probability increases to 17.6% $pm$ 1.5% out to a separation of 4.0. The median position of KOIs observed in this survey are 1.1$^{circ}$ closer to the galactic plane which may account for some of the nearby-star probability enhancement. We additionally detail 50 Keck adaptive optics images of Robo-AO observed KOIs in order to confirm 37 companions detected at a $<5sigma$ significance level and to obtain additional infrared photometry on higher-significance detected companions.
We have created a new autonomous laser-guide-star adaptive-optics (AO) instrument on the 60-inch (1.5-m) telescope at Palomar Observatory called Robo-AO. The instrument enables diffraction-limited resolution observing in the visible and near-infrared with the ability to observe well over one-hundred targets per night due to its fully robotic operation. Robo- AO is being used for AO surveys of targets numbering in the thousands, rapid AO imaging of transient events and longterm AO monitoring not feasible on large diameter telescope systems. We have taken advantage of cost-effective advances in deformable mirror and laser technology while engineering Robo-AO with the intention of cloning the system for other few-meter class telescopes around the world.
Robo-AO is the first astronomical laser guide star adaptive optics (AO) system designed to operate completely independent of human supervision. A single computer commands the AO system, the laser guide star, visible and near-infrared science cameras (which double as tip-tip sensors), the telescope, and other instrument functions. Autonomous startup and shutdown sequences as well as concatenated visible observations were demonstrated in late 2011. The fully robotic software is currently operating during a month long demonstration of Robo-AO at the Palomar Observatory 60-inch telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا