ترغب بنشر مسار تعليمي؟ اضغط هنا

The Robo-AO software: Fully autonomous operation of a laser guide star adaptive optics and science system

130   0   0.0 ( 0 )
 نشر من قبل Reed Riddle
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Robo-AO is the first astronomical laser guide star adaptive optics (AO) system designed to operate completely independent of human supervision. A single computer commands the AO system, the laser guide star, visible and near-infrared science cameras (which double as tip-tip sensors), the telescope, and other instrument functions. Autonomous startup and shutdown sequences as well as concatenated visible observations were demonstrated in late 2011. The fully robotic software is currently operating during a month long demonstration of Robo-AO at the Palomar Observatory 60-inch telescope.



قيم البحث

اقرأ أيضاً

We have created a new autonomous laser-guide-star adaptive-optics (AO) instrument on the 60-inch (1.5-m) telescope at Palomar Observatory called Robo-AO. The instrument enables diffraction-limited resolution observing in the visible and near-infrared with the ability to observe well over one-hundred targets per night due to its fully robotic operation. Robo- AO is being used for AO surveys of targets numbering in the thousands, rapid AO imaging of transient events and longterm AO monitoring not feasible on large diameter telescope systems. We have taken advantage of cost-effective advances in deformable mirror and laser technology while engineering Robo-AO with the intention of cloning the system for other few-meter class telescopes around the world.
The Robo-AO Kepler Planetary Candidate Survey is designed to observe every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for t ransit false positives. In this paper we present the results from the 2012 observing season, searching for stars close to 715 representative Kepler planet candidate hosts. We find 53 companions, 44 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from 0.15 to 2.5 separation, with contrast ratios up to delta-m~6. We measure an overall nearby-star-probability for Kepler planet candidates of 7.4% +/- 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several KOIs of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are coincident multiple systems, with several transiting planets shared between the two stars. Finally, we detect 2.6-sigma evidence for <15d-period giant planets being 2-3 times more likely be found in wide stellar binaries than smaller close-in planets and all sizes of further-out planets.
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficien cy provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15 to 4.0 separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5pm0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their stars habitable zone.
133 - Stuart D. Ryder 2014
Using the latest generation of adaptive optics imaging systems together with laser guide stars on 8m-class telescopes, we are finally revealing the previously-hidden population of supernovae in starburst galaxies. Finding these supernovae and measuri ng the amount of absorption due to dust is crucial to being able to accurately trace the star formation history of our Universe. Our images of the host galaxies are amongst the sharpest ever obtained from the ground, and reveal much about how and why these galaxies are forming massive stars (that become supernovae) at such a prodigious rate.
Sky-coverage in laser-assisted AO observations largely depends on the systems capability to guide on the faintest natural guide-stars possible. Here we give an up-to-date status of our natural guide-star processing tailored to the European-ELTs visib le and near-infrared (0.47 to 2.45 {mu}m) integral field spectrograph - Harmoni. We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wave-front is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles were currently using. Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the sky-coverage estimates thus obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا