ترغب بنشر مسار تعليمي؟ اضغط هنا

Flickering of accreting white dwarfs: the remarkable amplitude-flux relation and disc viscosity

81   0   0.0 ( 0 )
 نشر من قبل Radoslav K. Zamanov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze optical photometric data of short term variability (flickering) of accreting white dwarfs in cataclysmic variables (KR Aur, MV Lyr, V794 Aql, TT Ari, V425 Cas), recurrent novae (RS Oph and T CrB) and jet-ejecting symbiotic stars (CH Cyg and MWC 560). We find that the amplitude-flux relationship is visible over four orders of magnitude, in the range of fluxes from $10^{29}$ to $10^{33}$ erg s$^{-1}$ AA$^{-1}$, as a statistically perfect correlation with correlation coefficient 0.96 and p-value $ sim 10^{-28}$. In the above range, the amplitude of variability for any of our 9 objects is proportional to the flux level with (almost) one and the same factor of proportionality for all 9 accreting white dwarfs with $Delta F = 0.36 (pm 0.05) F_{av}$, $sigma_{rms} = 0.086(pm 0.011) F_{av}$, and $sigma_{rms} / Delta F = 0.24 pm 0.02$. Over all, our results indicate that the viscosity in the accretion discs is practically the same for all 9 objects in our sample, in the mass accretion rate range $2 times 10^{-11} - 2times10^{-7}$ $M_odot$ yr$^{-1}$.

قيم البحث

اقرأ أيضاً

74 - R. Zamanov , G. Latev , S. Boeva 2015
We report observations of the flickering variability of the symbiotic recurrent nova RS~Oph at quiescence in five bands ($UBVRI$). We find evidence of a correlation between the peak-to-peak flickering amplitude ($Delta F$) and the average flux of the hot component ($F_{rm av}$). The correlation is highly significant, with a correlation coefficient of 0.85 and a $p$-value of~$sim 10^{-20}$. Combining the data from all wavebands, we find a dependence of the type $Delta F propto F^k_{rm av}$, with power-law index $k = 1.02 pm 0.04$ for the $UBVRI$ flickering of RS~Oph. Thus, the relationship between the amplitude of variability and the average flux of the hot component is consistent with linearity. The rms amplitude of flickering is on average 8 per cent ($pm2$ per cent) of $F_{rm av}$. The detected correlation is similar to that found in accreting black holes/neutron stars and cataclysmic variables. The possible reasons are briefly discussed. The data are available upon request from the authors.
We report on the detection of the linear rms-flux relation in two accreting white dwarf binary systems: V1504 Cyg and KIC 8751494. The rms-flux relation relates the absolute root-mean-square (rms) variability of the light curve to its mean flux. The light curves analysed were obtained with the Kepler satellite at a 58.8 s cadence. The rms-flux relation was previously detected in only one other cataclysmic variable, MV Lyr. This result reenforces the ubiquity of the linear rms-flux relation as a characteristic property of accretion-induced variability, since it has been observed in several black hole binaries, neutron star binaries and active galactic nuclei. Moreover, its detection in V1504 Cyg is the first time the rms-flux relation has been detected in a dwarf nova-type CV during quiescence. This result, together with previous studies, hence points towards a common physical origin of accretion-induced variability, independent of the size, mass, or type of the central accreting compact object.
Over 1500 DBZ or DZ white dwarfs (WDs) have been observed so far, and polluted atmospheres with metal elements have been found among these WDs. The surface heavy element abundances of known DBZ or DZ WDs show an evolutionary sequence. By using Module s for Experiments in Stellar Evolution, we create DB WDs, and simulate the element diffusion due to high gravitational fields and the metal-rich material accretion coming from the planet disrupted by the WD. In our models, the input parameters ($alpha_{rm MLT}$, $alpha_{rm th}$ and $Z$) have very weak effect on DB WD structures including interior temperatures, chemical profiles and convective zones.The mass-accretion rate and the effective temperature of DB WDs determine the abundances of heavy elements. The evolutionary sequence of Ca element for about 1500 observed DB or DBZ WDs cannot be explained by the model with a constant mass-accretion rate, but is consistent well with the model in which the mass-accretion rate decreases by one power law when $T_{rm eff}>10$ kK and slightly increases by another power law when $T_{rm eff}<10$ kK. The observed DB WD evolutionary sequence of heavy element abundances originates from WD cooling and the change of mass-accretion rate.
90 - M. Hernanz , J. Jose (2 2008
Thermonuclear (type Ia) supernovae are explosions in accreting white dwarfs, but the exact scenario leading to these explosions is still unclear. An important step to clarify this point is to understand the behaviour of accreting white dwarfs in clos e binary systems. The characteristics of the white dwarf (mass, chemical composition, luminosity), the accreted material (chemical composition) and those related with the properties of the binary system (mass accretion rate), are crucial for the further evolution towards the explosion. An analysis of the outcome of accretion and the implications for the growth of the white dwarf towards the Chandrasekhar mass and its thermonuclear explosion is presented.
The double-degenerate model, involving the merger of double carbon-oxygen white dwarfs (CO WDs), is one of the two classic models for the progenitors of type Ia supernovae (SNe Ia). Previous studies suggested that off-centre carbon burning would occu r if the mass-accretion rate (Macc) is relatively high during the merging process, leading to the formation of oxygen-neon (ONe) cores that may collapse into neutron stars. However, the off-centre carbon burning is still incompletely understood, especially when the inwardly propagating burning wave reaches the centre. In this paper, we aim to investigate the propagating characteristics of burning waves and the subsequently evolutionary outcomes of these CO cores. We simulated the long-term evolution of CO WDs that accrete CO-rich material by employing the stellar evolution code MESA on the basis of the thick-disc assumption. We found that the final outcomes of CO WDs strongly depend on Macc (Msun/yr) based on the thick-disc assumption, which can be divided into four regions: (1) explosive carbon ignition in the centre, then SNe Ia (Macc < 2.45*10^-6); (2) OSi cores, then neutron stars (2.45*10^-6 < Macc < 4.5*10^-6); (3) ONe cores, then e-capture SNe (4.5*10^-6 < Macc < 1.05*10^-5); (4) off-centre oxygen and neon ignition, then off-centre explosion or Si-Fe cores (Macc > 1.05*10^-5). Our results indicate that the final fates of double CO WD mergers are strongly dependent on the merging processes (e.g. slow merger, fast merger, composite merger, violent merger, etc.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا