ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge doping induced phase transitions in hydrogenated and fluorinated graphene

418   0   0.0 ( 0 )
 نشر من قبل Tim Oliver Wehling
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that charge doping can induce transitions between three distinct adsorbate phases in hydrogenated and fluorinated graphene. By combining ab initio, approximate density functional theory and tight binding calculations we identify a transition from islands of C$_8$H$_2$ and C$_8$F$_2$ to random adsorbate distributions around a doping level of $pm 0.05$ e/C-atom. Furthermore, in situations with random adsorbate coverage, charge doping is shown to trigger an ordering transition where the sublattice symmetry is spontaneously broken when the doping level exceeds the adsorbate concentration. Rehybridization and lattice distortion energies make graphene which is covalently functionalized from one side only most susceptible to these two kinds of phase transitions. The energy gains associated with the clustering and ordering transitions exceed room temperature thermal energies.



قيم البحث

اقرأ أيضاً

Magnetism in single-side hydrogenated (C$_2$H) and fluorinated (C$_2$F) graphene is analyzed in terms of the Heisenberg model with parameters determined from first principles. We predict a frustrated ground state for both systems, which means the ins tability of collinear spin structures and sheds light on the absence of a conventional magnetic ordering in defective graphene demonstrated in recent experiments. Moreover, our findings suggest a highly correlated magnetic behavior at low temperatures offering the possibility of a spin-liquid state.
335 - L. Ju , J. Velasco Jr. , E. Huang 2014
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces[1] has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties, and the emergence of novel physical phenomena and device functionality[2-8]. Here we report photo-induced doping in van der Waals heterostructures (VDHs) consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photo-induced doping maintains the high carrier mobility of the graphene-boron nitride (G/BN) heterostructure, which resembles the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially-varying doping profiles such as p-n junctions. We show that this photo-induced doping arises from microscopically coupled optical and electrical responses of G/BN heterostructures, which includes optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.
The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8x10^14 cm^(-2) has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T^2 component - that can be associated with electron-electron scattering - and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy.
Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. Here we report observation of two topologically distinct phases supporting helical edge states in charge neutral Bernal-stacked tetralayer graphene in Hall b ar and Corbino geometries. As the magnetic field B and out-of-plane displacement field D are varied, we observe a phase diagram consisting of an insulating phase and two metallic phases, with 0, 1 and 2 helical edge states, respectively. These phases are accounted for by a theoretical model that relates their conductance to spin-polarization plateaus. Transitions between them arise from a competition among inter-layer hopping, electrostatic and exchange interaction energies. Our work highlights the complex competing symmetries and the rich quantum phases in few-layer graphene.
In this work, the current-induced inertial effects on skyrmions hosted in ferromagnetic systems are studied. {When the dynamics is considered beyond the particle-like description, magnetic skyrmions can deform due to a self-induced field. We perform Monte Carlo simulations to characterize the deformation of the skyrmion during its movement}. In the low-velocity regime, the deformation in the skyrmion shape is quantified by an effective inertial mass, which is related to the dissipative force. When skyrmions move faster, the large self-induced deformation triggers topological transitions. The transition is characterized by the proliferation of skyrmions and different total topological charge, which are obtained in terms of the skyrmion velocity. Our findings provide an alternative way to describe the skyrmion dynamics that take into account the deformations of its structure. Furthermore, the motion-induced topological phase transition brings the possibility to control the number of ferromagnetic skyrmions by velocity effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا