ترغب بنشر مسار تعليمي؟ اضغط هنا

Blind Identification via Lifting

90   0   0.0 ( 0 )
 نشر من قبل Henrik Ohlsson
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Blind system identification is known to be an ill-posed problem and without further assumptions, no unique solution is at hand. In this contribution, we are concerned with the task of identifying an ARX model from only output measurements. We phrase this as a constrained rank minimization problem and present a relaxed convex formulation to approximate its solution. To make the problem well posed we assume that the sought input lies in some known linear subspace.



قيم البحث

اقرأ أيضاً

Blind system identification is known to be a hard ill-posed problem and without further assumptions, no unique solution is at hand. In this contribution, we are concerned with the task of identifying an ARX model from only output measurements. Driven by the task of identifying systems that are turned on and off at unknown times, we seek a piecewise constant input and a corresponding ARX model which approximates the measured outputs. We phrase this as a rank minimization problem and present a relaxed convex formulation to approximate its solution. The proposed method was developed to model power consumption of electrical appliances and is now a part of a bigger energy disaggregation framework. Code will be made available online.
In this short paper, we aim at developing algorithms for sparse Volterra system identification when the system to be identified has infinite impulse response. Assuming that the impulse response is represented as a sum of exponentials and given input- output data, the problem of interest is to find the simplest nonlinear Volterra model which is compatible with the a priori information and the collected data. By simplest, we mean the model whose impulse response has the least number of exponentials. The algorithms provided are able to handle both fragmented data and measurement noise. Academic examples at the end of paper show the efficacy of proposed approach.
With more distributed energy resources (DERs) connected to distribution grids, better monitoring and control are needed, where identifying the topology accurately is the prerequisite. However, due to frequent re-configurations, operators usually cann ot know a complete structure in distribution grids. Luckily, the growing data from smart sensors, restricted by Ohm law, provides the possibility of topology inference. In this paper, we show how line parameters of Ohm equation can be estimated for topology identification even when there are hidden nodes. Specifically, the introduced learning method recursively conducts hidden-node detection and impedance calculation. However, the assumptions on uncorrelated data, availability of phasor measurements, and a balanced system, are not met in practices, causing large errors. To resolve these problems, we employ Cholesky whitening first with a proof for measurement decorrelations. For increasing robustness further, we show how to handle practical scenarios when only measurement magnitudes are available or when the grid is three-phase unbalanced. Numerical performance is verified on multi-size distribution grids with both simulation and real-world data.
In this paper, we study the system identification problem for sparse linear time-invariant systems. We propose a sparsity promoting block-regularized estimator to identify the dynamics of the system with only a limited number of input-state data samp les. We characterize the properties of this estimator under high-dimensional scaling, where the growth rate of the system dimension is comparable to or even faster than that of the number of available sample trajectories. In particular, using contemporary results on high-dimensional statistics, we show that the proposed estimator results in a small element-wise error, provided that the number of sample trajectories is above a threshold. This threshold depends polynomially on the size of each block and the number of nonzero elements at different rows of input and state matrices, but only logarithmically on the system dimension. A by-product of this result is that the number of sample trajectories required for sparse system identification is significantly smaller than the dimension of the system. Furthermore, we show that, unlike the recently celebrated least-squares estimators for system identification problems, the method developed in this work is capable of textit{exact recovery} of the underlying sparsity structure of the system with the aforementioned number of data samples. Extensive case studies on synthetically generated systems, physical mass-spring networks, and multi-agent systems are offered to demonstrate the effectiveness of the proposed method.
This paper considers the identification of large-scale 1D networks consisting of identical LTI dynamical systems. A new subspace identification method is developed that only uses local input-output information and does not rely on knowledge about the local state interaction. The identification of the local system matrices (up to a similarity transformation) is done via a low dimensional subspace retrieval step that enables the estimation of the Markov parameters of a locally lifted system. Using the estimated Markov parameters, the state-space realization of a single subsystem in the network is determined. The low dimensional subspace retrieval step exploits various key structural properties that are present in the data equation such as a low rank property and a {em two-layer} Toeplitz structure in the data matrices constructed from products of the system matrices. For the estimation of the system matrices of a single subsystem, it is formulated as a structured low-rank matrix factorization problem. The effectiveness of the proposed identification method is demonstrated by a simulation example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا