ترغب بنشر مسار تعليمي؟ اضغط هنا

Subspace Identification of Large-Scale 1D Homogeneous Networks

73   0   0.0 ( 0 )
 نشر من قبل Chengpu Yu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the identification of large-scale 1D networks consisting of identical LTI dynamical systems. A new subspace identification method is developed that only uses local input-output information and does not rely on knowledge about the local state interaction. The identification of the local system matrices (up to a similarity transformation) is done via a low dimensional subspace retrieval step that enables the estimation of the Markov parameters of a locally lifted system. Using the estimated Markov parameters, the state-space realization of a single subsystem in the network is determined. The low dimensional subspace retrieval step exploits various key structural properties that are present in the data equation such as a low rank property and a {em two-layer} Toeplitz structure in the data matrices constructed from products of the system matrices. For the estimation of the system matrices of a single subsystem, it is formulated as a structured low-rank matrix factorization problem. The effectiveness of the proposed identification method is demonstrated by a simulation example.



قيم البحث

اقرأ أيضاً

158 - Chakaveh Saedi , Mark Dras 2019
Authorship attribution is the process of identifying the author of a text. Approaches to tackling it have been conventionally divided into classification-based ones, which work well for small numbers of candidate authors, and similarity-based methods , which are applicable for larger numbers of authors or for authors beyond the training set; these existing similarity-based methods have only embodied static notions of similarity. Deep learning methods, which blur the boundaries between classification-based and similarity-based approaches, are promising in terms of ability to learn a notion of similarity, but have previously only been used in a conventional small-closed-class classification setup. Siamese networks have been used to develop learned notions of similarity in one-shot image tasks, and also for tasks of mostly semantic relatedness in NLP. We examine their application to the stylistic task of authorship attribution on datasets with large numbers of authors, looking at multiple energy functions and neural network architectures, and show that they can substantially outperform previous approaches.
The paper introduces a novel methodology for the identification of coefficients of switched autoregressive linear models. We consider the case when the systems outputs are contaminated by possibly large values of measurement noise. It is assumed that only partial information on the probability distribution of the noise is available. Given input-output data, we aim at identifying switched system coefficients and parameters of the distribution of the noise which are compatible with the collected data. System dynamics are estimated through expected values computation and by exploiting the strong law of large numbers. We demonstrate the efficiency of the proposed approach with several academic examples. The method is shown to be extremely effective in the situations where a large number of measurements is available; cases in which previous approaches based on polynomial or mixed-integer optimization cannot be applied due to very large computational burden.
This paper describes a fast speaker search system to retrieve segments of the same voice identity in the large-scale data. A recent study shows that Locality Sensitive Hashing (LSH) enables quick retrieval of a relevant voice in the large-scale data in conjunction with i-vector while maintaining accuracy. In this paper, we proposed Random Speaker-variability Subspace (RSS) projection to map a data into LSH based hash tables. We hypothesized that rather than projecting on completely random subspace without considering data, projecting on randomly generated speaker variability space would give more chance to put the same speaker representation into the same hash bins, so we can use less number of hash tables. Multiple RSS can be generated by randomly selecting a subset of speakers from a large speaker cohort. From the experimental result, the proposed approach shows 100 times and 7 times faster than the linear search and LSH, respectively
134 - Shiyuan He , Xiaomeng Yan 2021
Functional data analysis (FDA) methods have computational and theoretical appeals for some high dimensional data, but lack the scalability to modern large sample datasets. To tackle the challenge, we develop randomized algorithms for two important FD A methods: functional principal component analysis (FPCA) and functional linear regression (FLR) with scalar response. The two methods are connected as they both rely on the accurate estimation of functional principal subspace. The proposed algorithms draw subsamples from the large dataset at hand and apply FPCA or FLR over the subsamples to reduce the computational cost. To effectively preserve subspace information in the subsamples, we propose a functional principal subspace sampling probability, which removes the eigenvalue scale effect inside the functional principal subspace and properly weights the residual. Based on the operator perturbation analysis, we show the proposed probability has precise control over the first order error of the subspace projection operator and can be interpreted as an importance sampling for functional subspace estimation. Moreover, concentration bounds for the proposed algorithms are established to reflect the low intrinsic dimension nature of functional data in an infinite dimensional space. The effectiveness of the proposed algorithms is demonstrated upon synthetic and real datasets.
This paper studies the problem of decentralized measurement feedback stabilization of nonlinear interconnected systems. As a natural extension of the recent development on control vector Lyapunov functions, the notion of output control vector Lyapuno v function (OCVLF) is introduced for investigating decentralized measurement feedback stabilization problems. Sufficient conditions on (local) stabilizability are discussed which are based on the proposed notion of OCVLF. It is shown that a decentralized controller for a nonlinear interconnected system can be constructed using these conditions under an additional vector dissipation-like condition. To illustrate the proposed method, two examples are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا