ﻻ يوجد ملخص باللغة العربية
The paper draws the attention to the spatiotemporal symmetry of various vector-like physical quantities. The symmetry is specified by their invariance under the action of symmetry operations of the Opechowski nonrelativistic space-time rotation group O(3).{1, 1}= O(3), where 1 is time-reversal operation. It is argued that along with the canonical polar vector, there are another 7 symmetrically distinct classes of stationary physical quantities, which can be - and often are - denoted as standard three-components vectors, even though they do not transform as a static polar vector under all operations of O(3). The octet of symmetrically distinct directional quantities can be exemplified by: two kinds of polar vectors (electric dipole moment P and magnetic toroidal moment T, two kinds of axial vectors (magnetization M and electric toroidal moment G), two kinds of chiral bi-directors C and F (associated with the so-called true and false chirality, resp.) and still another two achiral bi-directors N and L, transforming as the nematic liquid crystal order parameter and as the antiferromagnetic order parameter of the hematite crystal alpha-Fe2O3, respectively.
The hodograph of the Kepler-Coulomb problem, that is, the path traced by its velocity vector, is shown to be a circle and then it is used to investigate other properties of the motion. We obtain the configuration space orbits of the problem starting
Parity-Time (PT) symmetric systems have been widely recognized as fundamental building blocks for the development of novel, ultra-sensitive opto-electronic devices. However, arguably one of their major drawbacks is that they rely on non-linear amplif
In the understanding of the fundamental interactions, the origin of an arrow of time is viewed as problematic. However, quantum field theory has an arrow of causality, which tells us which time direction is the past lightcone and which is the future.
Time-reversal (T) symmetry breaking is a fundamental physics concept underpinning a broad science and technology area, including topological magnets, axion physics, dissipationless Hall currents, or spintronic memories. A best known conventional mode
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and two-fold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems