ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum causality and the arrows of time and thermodynamics

130   0   0.0 ( 0 )
 نشر من قبل John F. Donoghue
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the understanding of the fundamental interactions, the origin of an arrow of time is viewed as problematic. However, quantum field theory has an arrow of causality, which tells us which time direction is the past lightcone and which is the future. This direction is tied to the conventions used in the quantization procedures. The different possible causal directions have related physics - in this sense they are covariant under time-reversal. However, only one causal direction emerges for a given set of conventions. This causal arrow tells us the direction that scattering reactions proceed. The time direction of scattering in turn tells us the time direction for which entropy increases - the so-called arrow of thermodynamics. This connection is overlooked in most discussions of the arrow of time.



قيم البحث

اقرأ أيضاً

Causality in quantum field theory is defined by the vanishing of field commutators for space-like separations. However, this does not imply a direction for causal effects. Hidden in our conventions for quantization is a connection to the definition o f an arrow of causality, i.e. what is the past and what is the future. If we mix quantization conventions within the same theory, we get a violation of microcausality. In such a theory with mixed conventions the dominant definition of the arrow of causality is determined by the stable states. In some quantum gravity theories, such as quadratic gravity and possibly asymptotic safety, such a mixed causality condition occurs. We discuss some of the implications.
Arrows of time - thermodynamical, cosmological, electromagnetic, quantum mechanical, psychological - are basic properties of Nature. For a quantum system-bath closed system the de-correlated initial conditions and no-memory (Markovian) dynamics are o utlined as necessary conditions for the appearance of the thermodynamical arrow. The emergence of the arrow for the system evolving according to non-unitary dynamics due to the presence of the bath, then, is a result of limited observability, and we conjecture the arrow in the observable Universe as determined by the dark sector acting as a bath. The voids in the large scale matter distribution induce hyperbolicity of the null geodesics, with possible observational consequences.
We show how uncertainty in the causal structure of field theory is essentially inevitable when one includes quantum gravity. This includes the fact that lightcones are ill-defined in such a theory - independent of the UV completion of the theory. We include details of the causality uncertainty which arises in theories of quadratic gravity.
In recent work we showed that, for a class of conformal field theories (CFT) with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, $eta/s$, could violate the conjectured Kovtun-Starinets-Son viscosity bound, $eta/sgeq1/4pi$. I n this paper we argue, in the context of the same model, that tuning $eta/s$ below $(16/25)(1/4pi)$ induces microcausality violation in the CFT, rendering the theory inconsistent. This is a concrete example in which inconsistency of a theory and a lower bound on viscosity are correlated, supporting the idea of a possible universal lower bound on $eta/s$ for all consistent theories.
The phase space of a relativistic system can be identified with the future tube of complexified Minkowski space. As well as a complex structure and a symplectic structure, the future tube, seen as an eight-dimensional real manifold, is endowed with a natural positive-definite Riemannian metric that accommodates the underlying geometry of the indefinite Minkowski space metric, together with its symmetry group. A unitary representation of the 15-parameter group of conformal transformations can then be constructed that acts upon the Hilbert space of square-integrable holomorphic functions on the future tube. These structures are enough to allow one to put forward a quantum theory of phase-space events. In particular, a theory of quantum measurement can be formulated in a relativistic setting, based on the use of positive operator valued measures, for the detection of phase-space events, hence allowing one to assign probabilities to the outcomes of joint space-time and four-momentum measurements in a manifestly covariant framework. This leads to a localization theorem for phase-space events in relativistic quantum theory, determined by the associated Compton wavelength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا