ترغب بنشر مسار تعليمي؟ اضغط هنا

Encapsulated formulation of the Selective Frequency Damping method

402   0   0.0 ( 0 )
 نشر من قبل Bastien Jordi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an alternative encapsulated formulation of the Selective Frequency Damping method for finding unstable equilibria of dynamical systems, which is particularly useful when analysing the stability of fluid flows. The formulation makes use of splitting methods, which means that it can be wrapped around an existing time-stepping code as a black box. The method is first applied to a scalar problem in order to analyse its stability and highlight the roles of the control coefficient $chi$ and the filter width $Delta$ in the convergence (or not) towards the steady-state. Then the steady-state of the incompressible flow past a two-dimensional cylinder at $Re=100$, obtained with a code which implements the spectral/hp element method, is presented.

قيم البحث

اقرأ أيضاً

The selective frequency damping (SFD) method is an alternative to classical Newtons method to obtain unstable steady-state solutions of dynamical systems. However this method has two main limitations: it does not converge for arbitrary control parame ters; and when it does converge, the time necessary to reach the steady-state solution may be very long. In this paper we present an adaptive algorithm to address these two issues. We show that by evaluating the dominant eigenvalue of a partially converged steady flow, we can select a control coefficient and a filter width that ensure an optimum convergence of the SFD method. We apply this adaptive method to several classical test cases of computational fluid dynamics and we show that a steady-state solution can be obtained without any a priori knowledge of the flow stability properties.
The shallow water equations (SWE) are a widely used model for the propagation of surface waves on the oceans. We consider the problem of optimally determining the initial conditions for the one-dimensional SWE in an unbounded domain from a small set of observations of the sea surface height. In the linear case we prove a theorem that gives sufficient conditions for convergence to the true initial conditions. At least two observation points must be used and at least one pair of observation points must be spaced more closely than half the effective minimum wavelength of the energy spectrum of the initial conditions. This result also applies to the linear wave equation. Our analysis is confirmed by numerical experiments for both the linear and nonlinear SWE data assimilation problems. These results show that convergence rates improve with increasing numbers of observation points and that at least three observation points are required for the practically useful results. Better results are obtained for the nonlinear equations provided more than two observation points are used. This paper is a first step in understanding the conditions for observability of the SWE for small numbers of observation points in more physically realistic settings.
A computational framework based on nonlinear direct-adjoint looping is presented for optimizing mixing strategies for binary fluid systems. The governing equations are the nonlinear Navier-Stokes equations, augmented by an evolution equation for a pa ssive scalar, which are solved by a spectral Fourier-based method. The stirrers are embedded in the computational domain by a Brinkman-penalization technique, and shape and path gradients for the stirrers are computed from the adjoint solution. Four cases of increasing complexity are considered, which demonstrate the efficiency and effectiveness of the computational approach and algorithm. Significant improvements in mixing efficiency, within the externally imposed bounds, are achieved in all cases.
118 - B. Philippi , Y. Jin 2015
A sensitive porosity adjoint method (SPAM) for optimizing the topology of fluid machines has been proposed. A sensitivity function with respect to the porosity has been developed. In the first step of the optimization process, porous media are introd uced into the flow regime according to the sensitivity function. Then the optimized porous media are transformed to solid walls. The turbulent flow in porous media is accounted for by a modified eddy-viscosity based turbulence model. Its influence on the adjoint equations is nevertheless neglected, which refers to the so called frozen turbulence assumption. A test case of application in terms of the turbulent rough wall channel flow shows that a considerable reduction of the objective function can be obtained by this method. The transformation from porous media to solid walls may have important effect on the optimization results.
The performance of interFoam (a widely used solver within OpenFOAM package) in simulating the propagation of water waves has been reported to be sensitive to the temporal and spatial resolution. To facilitate more accurate simulations, a numerical wa ve tank is built based on a high-order accurate Navier-Stokes model, which employs the VPM (volume-average/point-value multi-moment) scheme as the fluid solver and the THINC/QQ method (THINC method with quadratic surface representation and Gaussian quadrature) for the free-surface capturing. Simulations of regular waves in an intermediate water depth are conducted and the results are assessed via comparing with the analytical solutions. The performance of the present model and interFoam solver in simulating the wave propagation is systematically compared in this work. The results clearly demonstrate that compared with interFoam solver, the present model significantly improves the dissipation properties of the propagating wave, where the waveforms as well as the velocity distribution can be substantially maintained while the waves propagating over long distances even with large time steps and coarse grids. It is also shown that the present model requires much less computation time to reach a given error level in comparison with interFoam solver.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا