ﻻ يوجد ملخص باللغة العربية
The Kepler object KIC 12557548 shows irregular eclipsing behaviour with a constant 15.685 hr period, but strongly varying transit depth. In this paper we fit individual eclipses, in addition to fitting binned light curves, to learn more about the process underlying the eclipse depth variation. Additionally, we put forward observational constraints that any model of this planet-star system will have to match. We find two quiescent spells of ~30 orbital periods each where the transit depth is <0.1%, followed by relatively deep transits. Additionally, we find periods of on-off behaviour where >0.5% deep transits are followed by apparently no transit at all. Apart from these isolated events we find neither significant correlation between consecutive transit depths nor a correlation between transit depth and stellar intensity. We find a three-sigma upper limit for the secondary eclipse of 4.9*10^-5, consistent with a planet candidate with a radius of less than 4600 km. Using the short cadence data we find that a 1-D exponential dust tail model is insufficient to explain the data. We improved our model to a 2-D, two-component dust model with an opaque core and an exponential tail. Using this model we fit individual eclipses observed in short cadence mode. We find an improved fit of the data, quantifying earlier suggestions by Budaj (2013) of the necessity of at least two components. We find that deep transits have most absorption in the tail, and not in a disk-shaped, opaque coma, but the transit depth and the total absorption show no correlation with the tail length.
KIC 12557548 b is first of a growing class of intriguing disintegrating planet candidates, which lose mass in the form of a metal rich vapor that condenses into dust particles. Here, we follow up two perplexing observations of the system: 1) the tran
We present results of the final Kepler Data Processing Pipeline search for transiting planet signals in the full 17-quarter primary mission data set. The search includes a total of 198,709 stellar targets, of which 112,046 were observed in all 17 qua
The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatorys bandpass (0.42 um to 0.9 um).
We present simultaneous multi-color optical photometry using ULTRACAM of the transiting exoplanet KIC 12557548 b (also known as KIC 1255 b). This reveals, for the first time, the color dependence of the transit depth. Our g and z transits are similar
We present the discovery of KIC 9632895b, a 6.2 Earth-radius planet in a low-eccentricity, 240.5-day orbit about an eclipsing binary. The binary itself consists of a 0.93 and 0.194 solar mass pair of stars with an orbital period of 27.3 days. The pla