ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduced Activity And Large Particles From the Disintegrating Planet Candidate KIC 12557548b

92   0   0.0 ( 0 )
 نشر من قبل Everett Schlawin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatorys bandpass (0.42 um to 0.9 um). Observing the tails transit depth at multiple wavelengths can reveal the composition and particle size of the debris, constraining the makeup and lifetime of the sub-Mercury planet. Early dust particle size predictions from the scattering of the comet-like tail pointed towards a dust size of ~0.1 um for silicate compositions. These small particles would produce a much deeper optical transit depth than near-infrared transit depth. We measure a transmission spectrum for KIC 12557548b using the SpeX spectrograph (covering 0.8 um to 2.4 um) simultaneously with the MORIS imager taking r (0.63 um) photometry on the Infrared Telescope Facility for eight nights and one night in H band (1.63 um) using the Wide-Field IR Camera at the Palomar 200-inch telescope. The infrared spectra are plagued by systematic errors, but we argue that sufficient precision is obtained when using differential spectroscopic calibration when combining multiple nights. The average differential transmission spectrum is flat, supporting findings that KIC 12557548bs debris is likely composed of larger particles > ~0.5 um for pyroxene and olivine and > ~0.2 um for iron and corundum. The r photometric transit depths are all below the average Kepler value, suggesting that the observations occurred during a weak period or that the mechanisms producing optical broadband transit depths are suppressed.

قيم البحث

اقرأ أيضاً

We present multiwavelength photometry, high angular resolution imaging, and radial velocities, of the unique and confounding disintegrating low-mass planet candidate KIC 12557548b. Our high angular resolution imaging, which includes spacebased HST/WF C3 observations in the optical, and groundbased Keck/NIRC2 observations in K-band, allow us to rule-out background and foreground candidates at angular separations greater than 0.2 arcsec that are bright enough to be responsible for the transits we associate with KIC 12557548. Our radial velocity limit from Keck/HIRES allows us to rule-out bound, low-mass stellar companions to KIC 12557548 on orbits less than 10 years, as well as placing an upper-limit on the mass of the candidate planet of 1.2 Jupiter masses; therefore, the combination of our radial velocities, high angular-resolution imaging, and photometry are able to rule-out most false positive interpretations of the transits. Our precise multiwavelength photometry includes two simultaneous detections of the transit of KIC 12557548b using CFHT/WIRCam at 2.15 microns and the Kepler space telescope at 0.6 microns, as well as simultaneous null-detections of the transit by Kepler and HST/WFC3 at 1.4 microns. Our simultaneous HST/WFC3 and Kepler null-detections, provide no evidence for radically different transit depths at these wavelengths. Our simultaneous CFHT/WIRCam detections in the near-infrared and with Kepler in the optical reveal very similar transit depths (the average ratio of the transit depths at ~2.15 microns compared to ~0.6 microns is: 1.02 +/- 0.20). This suggests that if the transits we observe are due to scattering from single-size particles streaming from the planet in a comet-like tail, then the particles must be ~0.5 microns in radius or larger, which would favor that KIC 12557548b is a sub-Mercury, rather than super-Mercury, mass planet.
KIC 12557548 b is first of a growing class of intriguing disintegrating planet candidates, which lose mass in the form of a metal rich vapor that condenses into dust particles. Here, we follow up two perplexing observations of the system: 1) the tran sits appeared shallower than average in 2013 and 2014 and 2) the parameters derived from a high resolution spectrum of the star differed from other results using photometry and low resolution spectroscopy. We observe 5 transits of the system with the 61-inch Kuiper telescope in 2016 and show that they are consistent with photometry from the Kepler spacecraft in 2009-2013, suggesting that the dusty tail has returned to normal length and mass. We also evaluate high resolution archival spectra from the Subaru HDS spectrograph and find them to be consistent with a main-sequence Teff=4440 +/- 70 K star in agreement with the photometry and low resolution spectroscopy. This disfavors the hypothesis that planet disintegration affected the analysis of prior high resolution spectra of this star. We apply Principal Component Analysis to the Kepler long cadence data to understand the modes of disintegration. There is a tentative 491 day periodicity of the second principal component, which corresponds to possible long-term evolution of the dust grain sizes, though the mechanism on such long timescales remains unclear.
The Kepler object KIC 12557548 shows irregular eclipsing behaviour with a constant 15.685 hr period, but strongly varying transit depth. In this paper we fit individual eclipses, in addition to fitting binned light curves, to learn more about the pro cess underlying the eclipse depth variation. Additionally, we put forward observational constraints that any model of this planet-star system will have to match. We find two quiescent spells of ~30 orbital periods each where the transit depth is <0.1%, followed by relatively deep transits. Additionally, we find periods of on-off behaviour where >0.5% deep transits are followed by apparently no transit at all. Apart from these isolated events we find neither significant correlation between consecutive transit depths nor a correlation between transit depth and stellar intensity. We find a three-sigma upper limit for the secondary eclipse of 4.9*10^-5, consistent with a planet candidate with a radius of less than 4600 km. Using the short cadence data we find that a 1-D exponential dust tail model is insufficient to explain the data. We improved our model to a 2-D, two-component dust model with an opaque core and an exponential tail. Using this model we fit individual eclipses observed in short cadence mode. We find an improved fit of the data, quantifying earlier suggestions by Budaj (2013) of the necessity of at least two components. We find that deep transits have most absorption in the tail, and not in a disk-shaped, opaque coma, but the transit depth and the total absorption show no correlation with the tail length.
We present 45 ground-based photometric observations of the K2-22 system collected between December 2016 and May 2017, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets.
White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres, even though these elements should rapidly settle into the stellar interiors unless they are occasionally replenished. The abundance ratios of heavy elements in white dwarf atmospheres are similar to rocky bodies in the Solar system. This and the existence of warm dusty debris disks around about 4% of white dwarfs suggest that rocky debris from white dwarf progenitors planetary systems occasionally pollute the stars atmospheres. The total accreted mass can be comparable to that of large asteroids in the solar system. However, the process of disrupting planetary material has not yet been observed. Here, we report observations of a white dwarf being transited by at least one and likely multiple disintegrating planetesimals with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths up to 40% and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star hosts a dusty debris disk and the stars spectrum shows prominent lines from heavy elements like magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides evidence that heavy element pollution of white dwarfs can originate from disrupted rocky bodies such as asteroids and minor planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا