ﻻ يوجد ملخص باللغة العربية
We determined the frequency dependent effective permittivity of a large ternary network of randomly positioned resistors, capacitors, and diodes. A linear circuit analysis of such systems is shown to match the experimental dielectric response of single-walled carbon nanotube (SWCNT) filled polymers. This modeling method is able to reproduce the two most important features of SWCNT filled composites, i.e. the low frequency dispersion and dipolar relaxation. As a result of the modeling important physical conclusion proved by the experimental data was done: the low frequency behavior of SWCNT-filled polymer composites is mostly caused by the fraction of semiconducting SWCNTs.
Electronic transport through a single-wall metallic carbon nanotube weakly coupled to one ferromagnetic and one nonmagnetic lead is analyzed in the sequential tunneling limit. It is shown that both the spin and charge currents flowing through such sy
Recently, it was suggested that the polarization dependence of light absorption to a single-walled carbon nanotube is altered by carrier doping. We specify theoretically the doping level at which the polarization anisotropy is reversed by plasmon exc
Recent air pollution issues have raised significant attention to develop efficient air filters, and one of the most promising candidates is that enabled by nanofibers. We explore here selective molecular capture mechanism for volatile organic compoun
Prompted by recent reports on $sqrt{3} times sqrt{3}$ graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogen-doped graphene and carbo
We observe current rectification in a molecular diode consisting of a semiconducting single-wall carbon nanotube and an impurity. One half of the nanotube has no impurity, and it has a current-voltage (I-V) charcteristic of a typical semiconducting n