ﻻ يوجد ملخص باللغة العربية
Prompted by recent reports on $sqrt{3} times sqrt{3}$ graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogen-doped graphene and carbon nanotube nanostructures. In these structures, nitrogen atoms substitute one-sixth of the carbon atoms in the pristine hexagonal lattices with exact periodicity to form perfect $sqrt{3} times sqrt{3}$ superlattices of graphene and carbon nanotubes. Multiple nanostructures of $sqrt{3} times sqrt{3}$ graphene ribbons and carbon nanotubes are explored, and all configurations show nonmagnetic and metallic behaviors. The transport properties of $sqrt{3} times sqrt{3}$ graphene and carbon nanotube superlattices are calculated utilizing the non-equilibrium Greens function formalism combined with density functional theory. The transmission spectrum through the pristine and $sqrt{3} times sqrt{3}$ armchair carbon nanotube heterostructure shows quantized behavior under certain circumstances.
Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies us
We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to
Recent experiments showed the distinct observations on the transition metal ditelluride NiTe$_2$ under pressure: one reported a superconducting phase transition at 12 GPa, whereas another observed a sign reversal of Hall resistivity at 16 GPa without
Graphitic nitrogen-doped graphene is an excellent platform to study scattering processes of massless Dirac fermions by charged impurities, in which high mobility can be preserved due to the absence of lattice defects through direct substitution of ca
Since the discovery of graphene -a single layer of carbon atoms arranged in a honeycomb lattice - it was clear that this truly is a unique material system with an unprecedented combination of physical properties. Graphene is the thinnest membrane pre