ﻻ يوجد ملخص باللغة العربية
The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) sigma-omega approach. The commonly adopted noninteracting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out differ up to 150 MeV from their vacuum values.
The relaxation of hot nuclear matter to an equilibrated state in the central zone of heavy-ion collisions at energies from AGS to RHIC is studied within the microscopic UrQMD model. It is found that the system reaches the (quasi)equilibrium stage for
We argue that hadron multiplicities in central high energy nucleus-nucleus collisions are established very close to the phase boundary between hadronic and quark matter. In the hadronic picture this can be described by multi-particle collisions whose
We determine chemical freeze-out conditions from strangeness observables measured at RHIC beam energies. Based on a combined analysis of lowest-order net-Kaon fluctuations and strange anti-baryon over baryon yield ratios we obtain visibly enhanced fr
We provide a framework to estimate the systematic uncertainties in chemical freeze-out parameters extracted from $chi^2$ analysis of thermal model, using hadron multiplicity ratios in relativistic heavy-ion collision experiments. Using a well known t
We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron