ترغب بنشر مسار تعليمي؟ اضغط هنا

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

135   0   0.0 ( 0 )
 نشر من قبل Nicholas Hutzler
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Standard Model (SM) of particle physics fails to explain dark matter and why matter survived annihilation with antimatter following the Big Bang. Extensions to the SM, such as weak-scale Supersymmetry, may explain one or both of these phenomena by positing the existence of new particles and interactions that are asymmetric under time-reversal (T). These theories nearly always predict a small, yet potentially measurable ($10^{-27}$-$10^{-30}$ $e$ cm) electron electric dipole moment (EDM, $d_e$), which is an asymmetric charge distribution along the spin ($vec{S}$). The EDM is also asymmetric under T. Using the polar molecule thorium monoxide (ThO), we measure $d_e = (-2.1 pm 3.7_mathrm{stat} pm 2.5_mathrm{syst})times 10^{-29}$ $e$ cm. This corresponds to an upper limit of $|d_e| < 8.7times 10^{-29}$ $e$ cm with 90 percent confidence, an order of magnitude improvement in sensitivity compared to the previous best limits. Our result constrains T-violating physics at the TeV energy scale.



قيم البحث

اقرأ أيضاً

Experimental searches for the electron electric dipole moment, $d_e$, probe new physics beyond the Standard Model. Recently, the ACME Collaboration set a new limit of $|d_e| <1.1times 10^{-29}$ $ecdot textrm{cm}$ [Nature $textbf{562}$, 355 (2018)], c onstraining time reversal symmetry (T) violating physics in the 3-100 TeV energy scale. ACME extracts $d_e$ from the measurement of electron spin precession due to the thorium monoxide (ThO) molecules internal electric field. This recent ACME II measurement achieved an order of magnitude increased sensitivity over ACME I by reducing both statistical and systematic uncertainties in the measurement of the electric dipole precession frequency. The ACME II statistical uncertainty was a factor of 1.7 above the ideal shot-noise limit. We have since traced this excess noise to timing imperfections. When the experimental imperfections are eliminated, we show that shot noise limit is attained by acquiring noise-free data in the same configuration as ACME II.
A Cs fountain electron electric dipole moment (EDM) experiment using electric-field quantization is demonstrated. With magnetic fields reduced to 200 pT or less, the electric field lifts the degeneracy between hyperfine levels of different|mF| and, a long with the slow beam and fountain geometry, suppresses systematics from motional magnetic fields. Transitions are induced and the atoms polarized and analyzed in field-free regions. The feasibility of reaching a sensitivity to an electron EDM of 2 x 10 exp(-50) C-m [1.3 x 10 exp(-29) e-cm] in a cesium fountain experiment is discussed.
We investigate the merits of a measurement of the permanent electric dipole moment of the electron ($e$EDM) with barium monofluoride molecules, thereby searching for phenomena of CP violation beyond those incorporated in the Standard Model of particl e physics. Although the BaF molecule has a smaller enhancement factor in terms of the effective electric field than other molecules used in current studies (YbF, ThO and ThF$^+$), we show that a competitive measurement is possible by combining Stark-deceleration, laser-cooling and an intense primary cold source of BaF molecules. With the long coherent interaction times obtainable in a cold beam of BaF, a sensitivity of $5times10^{-30}$ e$cdot$cm for an $e$EDM is feasible. We describe the rationale, the challenges and the experimental methods envisioned to achieve this target.
Polyatomic polar molecules are promising systems for future experiments that search for violation of time-reversal and parity symmetries due to their advantageous electronic and vibrational structure, which allows laser cooling, full polarisation of the molecule, and reduction of systematic effects [I. Kozyryev and N.R. Hutzler, Phys, Rev. Lett. {bf 119}, 133002 (2017)]. In this work we investigate the enhancement factor of the electric dipole moment of the electron ($E_text{eff}$) in the triatomic monohydroxide molecules BaOH and YbOH within the high-accuracy relativistic coupled cluster method. The recommended $E_text{eff}$ values of the two systems are 6.65 $pm$ 0.15 GV/cm and 23.4 $pm$ 1.0 GV/cm, respectively. We compare our results with similar calculations for the isoelectronic diatomic molecules BaF and YbF, which are currently used in experimental search for $P,T$-odd effects in molecules. The $E_text{eff}$ values prove to be very close, within about 1.5 $%$ difference in magnitude between the diatomic and the triatomic compounds. Thus, BaOH and YbOH have a similar enhancement of the electron electric dipole moment, while benefiting from experimental advantages, and can serve as excellent candidates for next-generation experiments.
We describe the first precision measurement of the electrons electric dipole moment (eEDM, $d_e$) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on $^{180}{rm Hf}^{19}{rm F}^{+}$ in its metastable $^{3}Delta_{1}$ electronic state, we obtain $d_e = (0.9 pm 7.7_{rm stat} pm 1.7_{rm syst}) times 10^{-29},e,{rm cm}$, resulting in an upper bound of $|d_e| < 1.3 times 10^{-28},e,{rm cm}$ (90% confidence). Our result provides independent confirmation of the current upper bound of $|d_e| < 9.3 times 10^{-29},e,{rm cm}$ [J. Baron $textit{et al.}$, Science $textbf{343}$, 269 (2014)], and offers the potential to improve on this limit in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا