ترغب بنشر مسار تعليمي؟ اضغط هنا

Accuracy of energy measurement and reversible operation of a microcanonical Szilard engine

296   0   0.0 ( 0 )
 نشر من قبل Joakim Bergli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joakim Bergli




اسأل ChatGPT حول البحث

In a recent paper [Vaikuntanathan and Jarzynski, Phys. Rev. E {bf 83}, 061120 (2011), arXiv:1105.1744] a model was introduced whereby work could be extracted from a thermal bath by measuring the energy of a particle that was thermalized by the bath and manipulating the potential of the particle in the appropriate way, depending on the measurement outcome. If the extracted work is $W_1$ and the work $W_{text{er}}$ needed to be dissipated in order to erase the measured information in accordance with Landauers principle, it was shown that $W_1leq W_{text{er}}$ in accordance with the second law of thermodynamics. Here we extend this work in two directions: First, we discuss how accurately the energy should be measured. By increasing the accuracy one can extract more work, but at the same time one obtains more information that has to be deleted. We discuss what are the appropriate ways of optimizing the balance between the two and find optimal solutions. Second, whenever $W_1$ is strictly less than $W_{text{er}}$ it means that an irreversible step has been performed. We identify the irreversible step and propose a protocol that will achieve the same transition in a reversible way, increasing $W_1$ so that $W_1 = W_{text{er}}$.

قيم البحث

اقرأ أيضاً

In this work, the relationship between Carnot engine and Szilard engine was discussed. By defining the available information about the temperature difference between two heat reservoirs, the Carnot engine was found to have a same physical essence wit h Szilard engine: lossless conversion of available information. Thus, a generalized Carnots theorem for wider scope of application can be described as all the available information is 100% coded into work.
Velazquez and Curilef have proposed a methodology to extend Monte Carlo algorithms that are based on canonical ensemble. According to our previous study, their proposal allows us to overcome slow sampling problems in systems that undergo any type of temperature-driven phase transition. After a comprehensive review about ideas and connections of this framework, we discuss the application a re-weighting technique to improve the accuracy of microcanonical calculations, specifically, the well-known multi-histograms method of Ferrenberg and Swendsen. As example of application, we reconsider the study of four-state Potts model on the square lattice $Ltimes L$ with periodic boundary conditions. This analysis allows us to detect the existence of a very small latent heat per site $q_{L}$ during the occurrence of temperature-driven phase transition of this model, whose size dependence seems to follow a power-law $q_{L}(L)propto(1/L)^{z}$ with exponent $zsimeq0$.$26pm0$.$02$. It is discussed the compatibility of these results with the continuous character of temperature-driven phase transition when $Lrightarrow+infty$.
In a microcanonical ensemble (constant $NVE$, hard reflecting walls) and in a molecular dynamics ensemble (constant $NVEmathbf{PG}$, periodic boundary conditions) with a number $N$ of smooth elastic hard spheres in a $d$-dimensional volume $V$ having a total energy $E$, a total momentum $mathbf{P}$, and an overall center of mass position $mathbf{G}$, the individual velocity components, velocity moduli, and energies have transformed beta distributions with different arguments and shape parameters depending on $d$, $N$, $E$, the boundary conditions, and possible symmetries in the initial conditions. This can be shown marginalizing the joint distribution of individual energies, which is a symmetric Dirichlet distribution. In the thermodynamic limit the beta distributions converge to gamma distributions with different arguments and shape or scale parameters, corresponding respectively to the Gaussian, i.e., Maxwell-Boltzmann, Maxwell, and Boltzmann or Boltzmann-Gibbs distribution. These analytical results agree with molecular dynamics and Monte Carlo simulations with different numbers of hard disks or spheres and hard reflecting walls or periodic boundary conditions. The agreement is perfect with our Monte Carlo algorithm, which acts only on velocities independently of positions with the collision versor sampled uniformly on a unit half sphere in $d$ dimensions, while slight deviations appear with our molecular dynamics simulations for the smallest values of $N$.
We bring a Bayesian approach to the analysis of clocks. Using exponential distributions as priors for clocks, we analyze how well one can keep time with a single qubit freely precessing under a magnetic field. We find that, at least with a single qub it, quantum mechanics does not allow exact timekeeping, in contrast to classical mechanics which does. We find the design of the single-qubit clock that leads to maximum accuracy. Further, we find an energy versus accuracy tradeoff --- the energy cost is at least $k_BT$ times the improvement in accuracy as measured by the entropy reduction in going from the prior distribution to the posterior distribution. We propose a physical realization of the single qubit clock using charge transport across a capacitively-coupled quantum dot.
By developing and leveraging an explicit molecular realisation of a measurement-and-feedback-powered Szilard engine, we investigate the extraction of work from complex environments by minimal machines with finite capacity for memory and decision-maki ng. Living systems perform inference to exploit complex structure, or correlations, in their environment, but the physical limits and underlying cost/benefit trade-offs involved in doing so remain unclear. To probe these questions, we consider a minimal model for a structured environment - a correlated sequence of molecules - and explore mechanisms based on extended Szilard engines for extracting the work stored in these non-equilibrium correlations. We consider systems limited to a single bit of memory making binary choices at each step. We demonstrate that increasingly complex environments allow increasingly sophisticated inference strategies to extract more energy than simpler alternatives, and argue that optimal design of such machines should also consider the energy reserves required to ensure robustness against fluctuations due to mistakes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا