ﻻ يوجد ملخص باللغة العربية
In a microcanonical ensemble (constant $NVE$, hard reflecting walls) and in a molecular dynamics ensemble (constant $NVEmathbf{PG}$, periodic boundary conditions) with a number $N$ of smooth elastic hard spheres in a $d$-dimensional volume $V$ having a total energy $E$, a total momentum $mathbf{P}$, and an overall center of mass position $mathbf{G}$, the individual velocity components, velocity moduli, and energies have transformed beta distributions with different arguments and shape parameters depending on $d$, $N$, $E$, the boundary conditions, and possible symmetries in the initial conditions. This can be shown marginalizing the joint distribution of individual energies, which is a symmetric Dirichlet distribution. In the thermodynamic limit the beta distributions converge to gamma distributions with different arguments and shape or scale parameters, corresponding respectively to the Gaussian, i.e., Maxwell-Boltzmann, Maxwell, and Boltzmann or Boltzmann-Gibbs distribution. These analytical results agree with molecular dynamics and Monte Carlo simulations with different numbers of hard disks or spheres and hard reflecting walls or periodic boundary conditions. The agreement is perfect with our Monte Carlo algorithm, which acts only on velocities independently of positions with the collision versor sampled uniformly on a unit half sphere in $d$ dimensions, while slight deviations appear with our molecular dynamics simulations for the smallest values of $N$.
In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy lev
The aim of this paper is to introduce a new technique for calculation of observables, in particular multiplicity distributions, in various statistical ensembles at finite volume. The method is based on Fourier analysis of the grand canonical partitio
Starting from a master equation, we derive the evolution equation for the size distribution of elements in an evolving system, where each element can grow, divide into two, and produce new elements. We then probe general solutions of the evolution qu
A system of hard spheres exhibits physics that is controlled only by their density. This comes about because the interaction energy is either infinite or zero, so all allowed configurations have exactly the same energy. The low density phase is liqui
Large deviation theory and instanton calculus for stochastic systems are widely used to gain insight into the evolution and probability of rare events. At its core lies the realization that rare events are, under the right circumstances, dominated by