ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiview Navigation based on Extended Layered Depth Image Representation

68   0   0.0 ( 0 )
 نشر من قبل Thomas Maugey
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Emerging applications in multiview streaming look for providing interactive navigation services to video players. The user can ask for information from any viewpoint with a minimum transmission delay. The purpose is to provide user with as much information as possible with least number of redundancies. The recent concept of navigation segment representation consists of regrouping a given number of viewpoints in one signal and transmitting them to the users according to their navigation path. The question of the best description strategy of these navigation segments is however still open. In this paper, we propose to represent and code navigation segments by a method that extends the recent layered depth image (LDI) format. It consists of describing the scene from a viewpoint with multiple images organized in layers corresponding to the different levels of occluded objects. The notion of extended LDI comes from the fact that the size of this image is adapted to take into account the sides of the scene also, in contrary to classical LDI. The obtained results show a significant rate-distortion gain compared to classical multiview compression approaches in navigation scenario.

قيم البحث

اقرأ أيضاً

112 - Thomas Maugey , Antonio Ortega , 2013
In this paper, we propose a new representation for multiview image sets. Our approach relies on graphs to describe geometry information in a compact and controllable way. The links of the graph connect pixels in different images and describe the prox imity between pixels in the 3D space. These connections are dependent on the geometry of the scene and provide the right amount of information that is necessary for coding and reconstructing multiple views. This multiview image representation is very compact and adapts the transmitted geometry information as a function of the complexity of the prediction performed at the decoder side. To achieve this, our GBR adapts the accuracy of the geometry representation, in contrast with depth coding, which directly compresses with losses the original geometry signal. We present the principles of this graph-based representation (GBR) and we build a complete prototype coding scheme for multiview images. Experimental results demonstrate the potential of this new representation as compared to a depth-based approach. GBR can achieve a gain of 2 dB in reconstructed quality over depth-based schemes operating at similar rates.
Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives towards rich multimedia applications, it requires the design of n ovel representations and coding techniques in order to solve the new challenges imposed by interactive navigation. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server can generally not transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Hence, our new framework represents a promising solution for 3D data representation in novel interactive multimedia services.
We consider an interactive multiview video streaming (IMVS) system where clients select their preferred viewpoint in a given navigation window. To provide high quality IMVS, many high quality views should be transmitted to the clients. However, this is not always possible due to the limited and heterogeneous capabilities of the clients. In this paper, we propose a novel adaptive IMVS solution based on a layered multiview representation where camera views are organized into layered subsets to match the different clients constraints. We formulate an optimization problem for the joint selection of the views subsets and their encoding rates. Then, we propose an optimal and a reduced computational complexity greedy algorithms, both based on dynamic-programming. Simulation results show the good performance of our novel algorithms compared to a baseline algorithm, proving that an effective IMVS adaptive solution should consider the scene content and the client capabilities and their preferences in navigation.
In multiview video systems, multiple cameras generally acquire the same scene from different perspectives, such that users have the possibility to select their preferred viewpoint. This results in large amounts of highly redundant data, which needs t o be properly handled during encoding and transmission over resource-constrained channels. In this work, we study coding and transmission strategies in multicamera systems, where correlated sources send data through a bottleneck channel to a central server, which eventually transmits views to different interactive users. We propose a dynamic correlation-aware packet scheduling optimization under delay, bandwidth, and interactivity constraints. The optimization relies both on a novel rate-distortion model, which captures the importance of each view in the 3D scene reconstruction, and on an objective function that optimizes resources based on a client navigation model. The latter takes into account the distortion experienced by interactive clients as well as the distortion variations that might be observed by clients during multiview navigation. We solve the scheduling problem with a novel trellis-based solution, which permits to formally decompose the multivariate optimization problem thereby significantly reducing the computation complexity. Simulation results show the gain of the proposed algorithm compared to baseline scheduling policies. More in details, we show the gain offered by our dynamic scheduling policy compared to static camera allocation strategies and to schemes with constant coding strategies. Finally, we show that the best scheduling policy consistently adapts to the most likely user navigation path and that it minimizes distortion variations that can be very disturbing for users in traditional navigation systems.
Multiview video with interactive and smooth view switching at the receiver is a challenging application with several issues in terms of effective use of storage and bandwidth resources, reactivity of the system, quality of the viewing experience and system complexity. The classical decoding system for generating virtual views first projects a reference or encoded frame to a given viewpoint and then fills in the holes due to potential occlusions. This last step still constitutes a complex operation with specific software or hardware at the receiver and requires a certain quantity of information from the neighboring frames for insuring consistency between the virtual images. In this work we propose a new approach that shifts most of the burden due to interactivity from the decoder to the encoder, by anticipating the navigation of the decoder and sending auxiliary information that guarantees temporal and interview consistency. This leads to an additional cost in terms of transmission rate and storage, which we minimize by using optimization techniques based on the user behavior modeling. We show by experiments that the proposed system represents a valid solution for interactive multiview systems with classical decoders.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا