ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin effects and symmetry energy studies with INDRA

214   0   0.0 ( 0 )
 نشر من قبل Rivet Marie-France
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The equation of state of asymmetric nuclear matter is still controversial, as predictions at subsaturation as well as above normal density widely diverge. We discuss several experimental results measured in heavy-ion collisions with the INDRA array in the incident energy range 5-80 MeV/nucleon. In particular an estimate of the density dependence of the symmetry energy is derived from isospin diffusion results compared with a transport code: the potential part of the symmetry energy linearly increases with the density. We demonstrate that isospin equilibrium is reached in mid-central collisions for the two reactions Ni+Au at 52 MeV/nucleon and Xe+Sn at 32 MeV/nucleon. New possible variables and an improved modelization to investigate symmetry energy are discussed.

قيم البحث

اقرأ أيضاً

Efficiency corrected single ratios of neutron and proton spectra in central $^{112}$Sn+$^{112}$Sn and $^{124}$Sn+$^{124}$Sn collisions at 120 MeV/u are combined with double ratios to provide constraints on the density and momentum dependencies of the isovector mean-field potential. Bayesian analyses of these data reveal that the isoscalar and isovector nucleon effective masses, $m_s^* - m_v^*$ are strongly correlated. The linear correlation observed in $m_s^* - m_v^*$ yields a nearly independent constraint on the effective mass splitting $Delta m_{np}^*= (m_n^*-m_p^*)/m_N = -0.05_{-0.09}^{+0.09}delta$. The correlated constraint on the standard symmetry energy, $S_0$ and the slope, $L$ at saturation density yields the values of symmetry energy $S(rho_s)=16.8_{-1.2}^{+1.2}$ MeV at a sensitive density of $rho_s/rho_0 = 0.43_{-0.05}^{+0.05}$.
The isoscaling parameter $alpha$, from the fragments produced in the multifragmentation of $^{58}$Ni + $^{58}$Ni, $^{58}$Fe + $^{58}$Ni and $^{58}$Fe + $^{58}$Fe reactions at 30, 40 and 47 MeV/nucleon, was compared with that predicted by the antisymm etrized molecular dynamic (AMD) calculation based on two different nucleon-nucleon effective forces, namely the Gogny and Gogny-AS interaction. The results show that the data agrees better with the choice of Gogny-AS effective interaction, resulting in a symmetry energy of $sim$ 18-20 MeV. The observed value indicate that the fragments are formed at a reduced density of $sim$ 0.08 fm$^{-3}$.
Background: Models to calculate small isospin-symmetry-breaking effects in superallowed Fermi decays have been placed under scrutiny in recent years. A stringent test of these models is to measure transitions for which the correction is predicted to be large. The decay of 32Cl decay provides such a test case. Purpose: To improve the gamma yields following the beta decay of 32Cl and to determine the ft values of the the beta branches, particularly the one to the isobaric-analogue state in 32S. Method: Reaction-produced and recoil-spectrometer-separated 32Cl is collected in tape and transported to a counting location where beta-gamma coincidences are measured with a precisely-calibrated HPGe detector. Results: The precision on the gamma yields for most of the known beta branches has been improved by about an order of magnitude, and many new transitions have been observed. We have determined 32Cl-decay transition strengths extending up to E_x~11 MeV. The ft value for the decay to the isobaric-analogue state in 32S has been measured. A comparison to a shell-model calculation shows good agreement. CONCLUSIONS: We have experimentally determined the isospin-symmetry-breaking correction to the superallowed transition of this decay to be (delta_C-delta_NS)_exp=5.4(9)%, significantly larger than for any other known superallowed Fermi transition. This correction agrees with a shell-model calculation, which yields delta_C-delta_NS=4.8(5)%. Our results also provide a way to improve the measured ft values for the beta decay of 32Ar.
The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.
103 - G. Jhang , J. Estee , J. Barney 2020
In the past two decades, pions created in the high density regions of heavy ion collisions have been predicted to be sensitive at high densities to the symmetry energy term in the nuclear equation of state, a property that is key to our understanding of neutron stars. In a new experiment designed to study the symmetry energy, the multiplicities of negatively and positively charged pions have been measured with high accuracy for central $^{132}$Sn+$^{124}$Sn, $^{112}$Sn+$^{124}$Sn, and $^{108}$Sn+$^{112}$Sn collisions at $E/A=270~mathrm{MeV}$ with the S$pi$RIT Time Projection Chamber. While the uncertainties of individual pion multiplicities are measured to 4%, those of the charged pion multiplicity ratios are measured to 2%. We compare these data to predictions from seven major transport models. The calculations reproduce qualitatively the dependence of the multiplicities and their ratios on the total neutron to proton number in the colliding systems. However, the predictions of the transport models from different codes differ too much to allow extraction of reliable constraints on the symmetry energy from the data. This finding may explain previous contradictory conclusions on symmetry energy constraints obtained from pion data in Au+Au system. These new results call for better understanding of the differences among transport codes, and new observables that are more sensitive to the density dependence of the symmetry energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا