ﻻ يوجد ملخص باللغة العربية
In this paper, we tackle the problem of visual categorization of dog breeds, which is a surprisingly challenging task due to simultaneously present low interclass distances and high intra-class variances. Our approach combines several techniques well known in our community but often not utilized for fine-grained recognition: (1) automatic segmentation, (2) efficient part detection, and (3) combination of multiple features. In particular, we demonstrate that a simple head detector embedded in an off-the-shelf recognition pipeline can improve recognition accuracy quite significantly, highlighting the importance of part features for fine-grained recognition tasks. Using our approach, we achieved a 24.59% mean average precision performance on the Stanford dog dataset.
Viral diseases are major sources of poor yields for cassava, the 2nd largest provider of carbohydrates in Africa.At least 80% of small-holder farmer households in Sub-Saharan Africa grow cassava. Since many of these farmers have smart phones, they ca
Fine-grained image categorization is challenging due to the subtle inter-class differences.We posit that exploiting the rich relationships between channels can help capture such differences since different channels correspond to different semantics.
The core for tackling the fine-grained visual categorization (FGVC) is to learn subtle yet discriminative features. Most previous works achieve this by explicitly selecting the discriminative parts or integrating the attention mechanism via CNN-based
Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architec
Attention mechanism has demonstrated great potential in fine-grained visual recognition tasks. In this paper, we present a counterfactual attention learning method to learn more effective attention based on causal inference. Unlike most existing meth