ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine-grained Categorization -- Short Summary of our Entry for the ImageNet Challenge 2012

91   0   0.0 ( 0 )
 نشر من قبل Erik Rodner
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we tackle the problem of visual categorization of dog breeds, which is a surprisingly challenging task due to simultaneously present low interclass distances and high intra-class variances. Our approach combines several techniques well known in our community but often not utilized for fine-grained recognition: (1) automatic segmentation, (2) efficient part detection, and (3) combination of multiple features. In particular, we demonstrate that a simple head detector embedded in an off-the-shelf recognition pipeline can improve recognition accuracy quite significantly, highlighting the importance of part features for fine-grained recognition tasks. Using our approach, we achieved a 24.59% mean average precision performance on the Stanford dog dataset.

قيم البحث

اقرأ أيضاً

Viral diseases are major sources of poor yields for cassava, the 2nd largest provider of carbohydrates in Africa.At least 80% of small-holder farmer households in Sub-Saharan Africa grow cassava. Since many of these farmers have smart phones, they ca n easily obtain photos of dis-eased and healthy cassava leaves in their farms, allowing the opportunity to use computer vision techniques to monitor the disease type and severity and increase yields. How-ever, annotating these images is extremely difficult as ex-perts who are able to distinguish between highly similar dis-eases need to be employed. We provide a dataset of labeled and unlabeled cassava leaves and formulate a Kaggle challenge to encourage participants to improve the performance of their algorithms using semi-supervised approaches. This paper describes our dataset and challenge which is part of the Fine-Grained Visual Categorization workshop at CVPR2019.
379 - Yu Gao , Xintong Han , Xun Wang 2020
Fine-grained image categorization is challenging due to the subtle inter-class differences.We posit that exploiting the rich relationships between channels can help capture such differences since different channels correspond to different semantics. In this paper, we propose a channel interaction network (CIN), which models the channel-wise interplay both within an image and across images. For a single image, a self-channel interaction (SCI) module is proposed to explore channel-wise correlation within the image. This allows the model to learn the complementary features from the correlated channels, yielding stronger fine-grained features. Furthermore, given an image pair, we introduce a contrastive channel interaction (CCI) module to model the cross-sample channel interaction with a metric learning framework, allowing the CIN to distinguish the subtle visual differences between images. Our model can be trained efficiently in an end-to-end fashion without the need of multi-stage training and testing. Finally, comprehensive experiments are conducted on three publicly available benchmarks, where the proposed method consistently outperforms the state-of-theart approaches, such as DFL-CNN (Wang, Morariu, and Davis 2018) and NTS (Yang et al. 2018).
The core for tackling the fine-grained visual categorization (FGVC) is to learn subtle yet discriminative features. Most previous works achieve this by explicitly selecting the discriminative parts or integrating the attention mechanism via CNN-based approaches.However, these methods enhance the computational complexity and make the modeldominated by the regions containing the most of the objects. Recently, vision trans-former (ViT) has achieved SOTA performance on general image recognition tasks. Theself-attention mechanism aggregates and weights the information from all patches to the classification token, making it perfectly suitable for FGVC. Nonetheless, the classifi-cation token in the deep layer pays more attention to the global information, lacking the local and low-level features that are essential for FGVC. In this work, we proposea novel pure transformer-based framework Feature Fusion Vision Transformer (FFVT)where we aggregate the important tokens from each transformer layer to compensate thelocal, low-level and middle-level information. We design a novel token selection mod-ule called mutual attention weight selection (MAWS) to guide the network effectively and efficiently towards selecting discriminative tokens without introducing extra param-eters. We verify the effectiveness of FFVT on three benchmarks where FFVT achieves the state-of-the-art performance.
Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architec ture is presented to address those problems for weakly supervised FGVC. Specifically, we incorporate convolutional operations along edges of the tree structure, and use the routing functions in each node to determine the root-to-leaf computational paths within the tree. The final decision is computed as the summation of the predictions from leaf nodes. The deep convolutional operations learn to capture the representations of objects, and the tree structure characterizes the coarse-to-fine hierarchical feature learning process. In addition, we use the attention transformer module to enforce the network to capture discriminative features. The negative log-likelihood loss is used to train the entire network in an end-to-end fashion by SGD with back-propagation. Several experiments on the CUB-200-2011, Stanford Cars and Aircraft datasets demonstrate that the proposed method performs favorably against the state-of-the-arts.
Attention mechanism has demonstrated great potential in fine-grained visual recognition tasks. In this paper, we present a counterfactual attention learning method to learn more effective attention based on causal inference. Unlike most existing meth ods that learn visual attention based on conventional likelihood, we propose to learn the attention with counterfactual causality, which provides a tool to measure the attention quality and a powerful supervisory signal to guide the learning process. Specifically, we analyze the effect of the learned visual attention on network prediction through counterfactual intervention and maximize the effect to encourage the network to learn more useful attention for fine-grained image recognition. Empirically, we evaluate our method on a wide range of fine-grained recognition tasks where attention plays a crucial role, including fine-grained image categorization, person re-identification, and vehicle re-identification. The consistent improvement on all benchmarks demonstrates the effectiveness of our method. Code is available at https://github.com/raoyongming/CAL
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا