ترغب بنشر مسار تعليمي؟ اضغط هنا

Channel Interaction Networks for Fine-Grained Image Categorization

380   0   0.0 ( 0 )
 نشر من قبل Weilin Huang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fine-grained image categorization is challenging due to the subtle inter-class differences.We posit that exploiting the rich relationships between channels can help capture such differences since different channels correspond to different semantics. In this paper, we propose a channel interaction network (CIN), which models the channel-wise interplay both within an image and across images. For a single image, a self-channel interaction (SCI) module is proposed to explore channel-wise correlation within the image. This allows the model to learn the complementary features from the correlated channels, yielding stronger fine-grained features. Furthermore, given an image pair, we introduce a contrastive channel interaction (CCI) module to model the cross-sample channel interaction with a metric learning framework, allowing the CIN to distinguish the subtle visual differences between images. Our model can be trained efficiently in an end-to-end fashion without the need of multi-stage training and testing. Finally, comprehensive experiments are conducted on three publicly available benchmarks, where the proposed method consistently outperforms the state-of-theart approaches, such as DFL-CNN (Wang, Morariu, and Davis 2018) and NTS (Yang et al. 2018).

قيم البحث

اقرأ أيضاً

Viral diseases are major sources of poor yields for cassava, the 2nd largest provider of carbohydrates in Africa.At least 80% of small-holder farmer households in Sub-Saharan Africa grow cassava. Since many of these farmers have smart phones, they ca n easily obtain photos of dis-eased and healthy cassava leaves in their farms, allowing the opportunity to use computer vision techniques to monitor the disease type and severity and increase yields. How-ever, annotating these images is extremely difficult as ex-perts who are able to distinguish between highly similar dis-eases need to be employed. We provide a dataset of labeled and unlabeled cassava leaves and formulate a Kaggle challenge to encourage participants to improve the performance of their algorithms using semi-supervised approaches. This paper describes our dataset and challenge which is part of the Fine-Grained Visual Categorization workshop at CVPR2019.
The challenges of high intra-class variance yet low inter-class fluctuations in fine-grained visual categorization are more severe with few labeled samples, textit{i.e.,} Fine-Grained categorization problems under the Few-Shot setting (FGFS). High-or der features are usually developed to uncover subtle differences between sub-categories in FGFS, but they are less effective in handling the high intra-class variance. In this paper, we propose a Target-Oriented Alignment Network (TOAN) to investigate the fine-grained relation between the target query image and support classes. The feature of each support image is transformed to match the query ones in the embedding feature space, which reduces the disparity explicitly within each category. Moreover, different from existing FGFS approaches devise the high-order features over the global image with less explicit consideration of discriminative parts, we generate discriminative fine-grained features by integrating compositional concept representations to global second-order pooling. Extensive experiments are conducted on four fine-grained benchmarks to demonstrate the effectiveness of TOAN compared with the state-of-the-art models.
The core for tackling the fine-grained visual categorization (FGVC) is to learn subtle yet discriminative features. Most previous works achieve this by explicitly selecting the discriminative parts or integrating the attention mechanism via CNN-based approaches.However, these methods enhance the computational complexity and make the modeldominated by the regions containing the most of the objects. Recently, vision trans-former (ViT) has achieved SOTA performance on general image recognition tasks. Theself-attention mechanism aggregates and weights the information from all patches to the classification token, making it perfectly suitable for FGVC. Nonetheless, the classifi-cation token in the deep layer pays more attention to the global information, lacking the local and low-level features that are essential for FGVC. In this work, we proposea novel pure transformer-based framework Feature Fusion Vision Transformer (FFVT)where we aggregate the important tokens from each transformer layer to compensate thelocal, low-level and middle-level information. We design a novel token selection mod-ule called mutual attention weight selection (MAWS) to guide the network effectively and efficiently towards selecting discriminative tokens without introducing extra param-eters. We verify the effectiveness of FFVT on three benchmarks where FFVT achieves the state-of-the-art performance.
Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architec ture is presented to address those problems for weakly supervised FGVC. Specifically, we incorporate convolutional operations along edges of the tree structure, and use the routing functions in each node to determine the root-to-leaf computational paths within the tree. The final decision is computed as the summation of the predictions from leaf nodes. The deep convolutional operations learn to capture the representations of objects, and the tree structure characterizes the coarse-to-fine hierarchical feature learning process. In addition, we use the attention transformer module to enforce the network to capture discriminative features. The negative log-likelihood loss is used to train the entire network in an end-to-end fashion by SGD with back-propagation. Several experiments on the CUB-200-2011, Stanford Cars and Aircraft datasets demonstrate that the proposed method performs favorably against the state-of-the-arts.
149 - Hao Peng , Jianxin Li , Qiran Gong 2019
Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, m ining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا