ترغب بنشر مسار تعليمي؟ اضغط هنا

Large momentum-dependence of the main dispersion kink in the high-Tc superconductor Bi2Sr2CaCu2O8+{delta}

188   0   0.0 ( 0 )
 نشر من قبل Nicholas Plumb
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrahigh resolution angle-resolved photoemission spectroscopy with low-energy photons is used to study the detailed momentum dependence of the well-known nodal kink dispersion anomaly of Bi2Sr2CaCu2O8+{delta}. We find that the kinks location transitions smoothly from a maximum binding energy of about 65 meV at the node of the d-wave superconducting gap to 55 meV roughly one-third of the way to the antinode. Meanwhile, the self-energy spectrum corresponding to the kink dramatically sharpens and intensifies beyond a critical point in momentum space. We discuss the possible bosonic spectrum in energy and momentum space that can couple to the k-space dispersion of the electronic kinks.



قيم البحث

اقرأ أيضاً

139 - L. Wray , D. Qian , D. Hsieh 2008
We present a systematic angle-resolved photoemission spectroscopic study of the high-Tc superconductor class (Sr/Ba){1-x}(K/Na)xFe2As2. By utilizing a photon-energy-modulation contrast and scattering geometry we report the Fermi surface and the momen tum dependence of the superconducting gap, Delta(k). A prominent quasiparticle dispersion kink reflecting strong scattering processes is observed in a binding-energy range of 25-55 meV in the superconducting state, and the coherence length or the extent of the Cooper pair wave function is found to be about 20-angstrom, which is uncharacteristic of a superconducting phase realized by the BCS-phonon-retardation mechanism. The observed 40 meV kink likely reflects contributions from the frustrated spin excitations and scattering from the soft phonons. Results taken collectively provide direct clues to the nature of the pairing potential including an internal phase-shift factor in the superconducting order parameter which leads to a Brillouin zone node in a strong-coupling setting.
100 - H. Iwasawa , Y. Aiura , T. Saitoh 2005
We present detailed energy dispersions near the Fermi level on the monolayer perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved photoemission spectroscopy. An orbital selectivity of the kink in the dispersion of Sr2RuO4 has be en found: A kink for the Ru 4d_xy orbital is clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides insight into the origin of the kink.
The nature of the pseudogap state, observed above the superconducting transition temperature TC in many high temperature superconductors, is the center of much debate. Recently, this discussion has focused on the number of energy gaps in these materi als. Some experiments indicate a single energy gap, implying that the pseudogap is a precursor state. Others indicate two, suggesting that it is a competing or coexisting phase. Here we report on temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We have found a new, narrow, homogeneous gap that vanishes near TC, superimposed on the typically observed, inhomogeneous, broad gap, which is only weakly temperature dependent. These results not only support the two gap picture, but also explain previously troubling differences between scanning tunneling microscopy and other experimental measurements.
The {}^{17}O NMR spectra of Bi_2Sr_2CaCu_2O$_{8+delta}$ (Bi-2212) single crystals were measured in the temperature range from 4 K to 200 K and magnetic fields from 3 to 29 T, reported here principally at 8 T. The NMR linewidth of the oxygen in the Cu O_{2} plane was found to be magnetically broadened with the temperature dependence of a Curie law where the Curie coefficient decreases with increased doping. This inhomogeneous magnetism is an impurity effect intrinsic to oxygen doping and persists unmodified into the superconducting state.
Doped Mott insulators have been shown to have a strong propensity to form patterns of holes and spins often referred to as stripes. In copper-oxides, doping also gives rise to the pseudogap state, which transforms into a high temperature superconduct or with sufficient doping or by reducing the temperature. A long standing question has been the interplay between pseudogap, which is generic to all hole-doped cuprates, and stripes, whose static form occurs in only one family of cuprates over a narrow range of the phase diagram. Here we examine the spatial reorganization of electronic states with the onset of the pseudogap state at T* in the high-temperature superconductor Bi2Sr2CaCu2O8+x using spectroscopic mapping with the scanning tunneling microscope (STM). We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes. As expected, the stripe patterns are strongest when the hole concentration in the CuO2 planes is close to 1/8 (per Cu). While demonstrating that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the cuprate phase diagram, our experiments indicate that they are a consequence of pseudogap behavior rather than its cause.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا