ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the Two Gaps of the High-TC Superconductor Pb-Bi2Sr2CuO6+x

225   0   0.0 ( 0 )
 نشر من قبل Michael Boyer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the pseudogap state, observed above the superconducting transition temperature TC in many high temperature superconductors, is the center of much debate. Recently, this discussion has focused on the number of energy gaps in these materials. Some experiments indicate a single energy gap, implying that the pseudogap is a precursor state. Others indicate two, suggesting that it is a competing or coexisting phase. Here we report on temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We have found a new, narrow, homogeneous gap that vanishes near TC, superimposed on the typically observed, inhomogeneous, broad gap, which is only weakly temperature dependent. These results not only support the two gap picture, but also explain previously troubling differences between scanning tunneling microscopy and other experimental measurements.



قيم البحث

اقرأ أيضاً

One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strengt h and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data that suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome.
Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x )As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.
The mystery of the normal state in the underdoped cuprates has deepened with the use of newer and complementary experimental probes. While photoemission studies have revealed solely `Fermi arcs centered on nodal points in the Brillouin zone at which holes aggregate upon doping, more recent quantum oscillation experiments have been interpreted in terms of an ambipolar Fermi surface, that includes sections containing electron carriers located at the antinodal region. To address the question of whether an ambipolar Fermi surface truly exists, here we utilize measurements of the second harmonic quantum oscillations, which reveal that the amplitude of these oscillations arises mainly from oscillations in the chemical potential, providing crucial information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In particular, the detailed relationship between the second harmonic amplitude and the fundamental amplitude of the quantum oscillations leads us to the conclusion that there exists only a single underlying quasi-two dimensional Fermi surface pocket giving rise to the multiple frequency components observed via the effects of warping, bilayer splitting and magnetic breakdown. A range of studies suggest that the pocket is most likely associated with states near the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high magnetic fields.
The evolution of the thermoelectric power S(T) with doping, p, of single-layer Bi2Sr2CuO6+d ceramics in the strongly overdoped region is studied in detail. Analysis in term of drag and diffusion contributions indicates a departure of the diffusion fr om the T-linear metallic behavior. This effect is increased in the strongly overdoped range (p~0.2-0.28) and should reflect the proximity of some topological change.
Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO) hetero-structure junctions exhibited tunable resistance that was entirely different with behaviors of semiconductor devices. Tunable superconductivity in YBCO junctions, increasing over 20 K in transition temperature, has achieved by using electric processes. To our knowledge, this is the first observation that intrinsic property of high TC superconductors superconductivity can be adjusted as tunable functional parameters of devices. The fantastic phenomenon caused by carrier injection was discussed based on a proposed charge carrier self-trapping model and BCS theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا