ﻻ يوجد ملخص باللغة العربية
A combination of dynamical mean field theory and density functional theory, as implemented in Phys. Rev. B 81, 195107 (2010), is applied to both the early and late transition metal oxides. For fixed value of the local Coulomb repulsion, without fine tuning, we obtain the main features of these series, such as the metallic character of SrVO$_3$ and the the insulating gaps of LaVO$_3$, LaTiO$_3$ and La$_2$CO$_4$ which are in good agreement with experiment. The study highlights the importance of local physics and high energy hybridization in the screening of the Hubbard interaction and how different low energy behaviors can emerge from the a unified treatment of the transition metal series.
We present the first dynamical implementation of the combined GW and dynamical mean field scheme (GW+DMFT) for first principles calculations of the electronic properties of correlated materials. The application to the ternary transition metal oxide S
A metal-insulator transition (MIT) in BiFeO$_3$ under pressure was investigated by a method combining Generalized Gradient Corrected Local Density Approximation with Dynamical Mean-Field Theory (GGA+DMFT). Our paramagnetic calculations are found to b
In this Letter we report the first LDA+DMFT (method combining Local Density Approximation with Dynamical Mean-Field Theory) results of magnetic and spectral properties calculation for paramagnetic phases of FeO at ambient and high pressures (HP). At
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin
We address the nature of the Mott transition in the Hubbard model at half-filling using cluster Dynamical Mean Field Theory (DMFT). We compare cluster DMFT results with those of single site DMFT. We show that inclusion of the short range correlations