ﻻ يوجد ملخص باللغة العربية
We introduce and study conic geometric programs (CGPs), which are convex optimization problems that unify geometric programs (GPs) and conic optimization problems such as semidefinite programs (SDPs). A CGP consists of a linear objective function that is to be minimized subject to affine constraints, convex conic constraints, and upper bound constraints on sums of exponential and affine functions. The conic constraints are the central feature of conic programs such as SDPs, while upper bounds on combined exponential/affine functions are generalizations of the types of constraints found in GPs. The dual of a CGP involves the maximization of the negative relative entropy between two nonnegative vectors jointly, subject to affine and conic constraints on the two vectors. Although CGPs contain GPs and SDPs as special instances, computing global optima of CGPs is not much harder than solving GPs and SDPs. More broadly, the CGP framework facilitates a range of new applications that fall outside the scope of SDPs and GPs. Specifically, we demonstrate the utility of CGPs in providing solutions to problems such as permanent maximization, hitting-time estimation in dynamical systems, the computation of the capacity of channels transmitting quantum information, and robust optimization formulations of GPs.
We introduce log-log convex programs, which are optimization problems with positive variables that become convex when the variables, objective functions, and constraint functions are replaced with their logs, which we refer to as a log-log transforma
Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a plannin
In this paper we consider a class of convex conic programming. In particular, we propose an inexact augmented Lagrangian (I-AL) method for solving this problem, in which the augmented Lagrangian subproblems are solved approximately by a variant of Ne
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage
We provide a condition-based analysis of two interior-point methods for unconstrained geometric programs, a class of convex programs that arise naturally in applications including matrix scaling, matrix balancing, and entropy maximization. Our condit