ترغب بنشر مسار تعليمي؟ اضغط هنا

A Classification of Configuration Spaces of Planar Robot Arms with Application to a Continuous Inverse Kinematics Problem

40   0   0.0 ( 0 )
 نشر من قبل Subhrajit Bhattacharya
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using results on the topology of moduli space of polygons [Jaggi, 92; Kapovich and Millson, 94], it can be shown that for a planar robot arm with $n$ segments there are some values of the base-length, $z$, at which the configuration space of the constrained arm (arm with its end effector fixed) has two disconnected components, while at other values the constrained configuration space has one connected component. We first review some of these known results. Then the main design problem addressed in this paper is the construction of pairs of continuous inverse kinematics for arbitrary robot arms, with the property that the two inverse kinematics agree when the constrained configuration space has a single connected component, but they give distinct configurations (one in each connected component) when the configuration space of the constrained arm has two components. This design is made possible by a fundamental theoretical contribution in this paper -- a classification of configuration spaces of robot arms such that the type of path that the system (robot arm) takes through certain critical values of the forward kinematics function is completely determined by the class to which the configuration space of the arm belongs. This classification result makes the aforesaid design problem tractable, making it sufficient to design a pair of inverse kinematics for each class of configuration spaces (three of them in total). We discuss the motivation for this work, which comes from a more extensive problem of motion planning for the end effector of a robot arm requiring us to continuously sample one configuration from each connected component of the constrained configuration spaces. We demonstrate the low complexity of the presented algorithm through a Javascript + HTML5 based implementation available at http://hans.math.upenn.edu/~subhrabh/nowiki/robot_arm_JS-HTML5/arm.html

قيم البحث

اقرأ أيضاً

This paper presents the first ever approach for solving emph{continuous-observation} Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and their semi-Markovian counterparts, Dec-POSMDPs. This contribution is especially importa nt in robotics, where a vast number of sensors provide continuous observation data. A continuous-observation policy representation is introduced using Stochastic Kernel-based Finite State Automata (SK-FSAs). An SK-FSA search algorithm titled Entropy-based Policy Search using Continuous Kernel Observations (EPSCKO) is introduced and applied to the first ever continuous-observation Dec-POMDP/Dec-POSMDP domain, where it significantly outperforms state-of-the-art discrete approaches. This methodology is equally applicable to Dec-POMDPs and Dec-POSMDPs, though the empirical analysis presented focuses on Dec-POSMDPs due to their higher scalability. To improve convergence, an entropy injection policy search acceleration approach for both continuous and discrete observation cases is also developed and shown to improve convergence rates without degrading policy quality.
In this paper, a combined formation acquisition and cooperative extremum seeking control scheme is proposed for a team of three robots moving on a plane. The extremum seeking task is to find the maximizer of an unknown two-dimensional function on the plane. The function represents the signal strength field due to a source located at maximizer, and is assumed to be locally concave around maximizer and monotonically decreasing in distance to the source location. Taylor expansions of the field function at the location of a particular lead robot and the maximizer are used together with a gradient estimator based on signal strength measurements of the robots to design and analyze the proposed control scheme. The proposed scheme is proven to exponentially and simultaneously (i) acquire the specified geometric formation and (ii) drive the lead robot to a specified neighborhood disk around maximizer, whose radius depends on the specified desired formation size as well as the norm bounds of the Hessian of the field function. The performance of the proposed control scheme is evaluated using a set of simulation experiments.
95 - Hanlei Wang 2014
In this paper, we investigate the adaptive control problem for robot manipulators with both the uncertain kinematics and dynamics. We propose two adaptive control schemes to realize the objective of task-space trajectory tracking irrespective of the uncertain kinematics and dynamics. The proposed controllers have the desirable separation property, and we also show that the first adaptive controller with appropriate modifications can yield improved performance, without the expense of conservative gain choice. The performance of the proposed controllers is shown by numerical simulations.
For planar ($N$+1)-body ($N$,$geq$ 2) problem with a regular $N$-polygon, under the assumption that the ($N$+1)-th body locates at the geometric center of the regular $N$-polygon, we obtain the sufficient and necessary conditions that the $N$+1 bodies can form a central configuration.
Today, physical Human-Robot Interaction (pHRI) is a very popular topic in the field of ground manipulation. At the same time, Aerial Physical Interaction (APhI) is also developing very fast. Nevertheless, pHRI with aerial vehicles has not been addres sed so far. In this work, we present the study of one of the first systems in which a human is physically connected to an aerial vehicle by a cable. We want the robot to be able to pull the human toward a desired position (or along a path) only using forces as an indirect communication-channel. We propose an admittance-based approach that makes pHRI safe. A controller, inspired by the literature on flexible manipulators, computes the desired interaction forces that properly guide the human. The stability of the system is formally proved with a Lyapunov-based argument. The system is also shown to be passive, and thus robust to non-idealities like additional human forces, time-varying inputs, and other external disturbances. We also design a maneuver regulation policy to simplify the path following problem. The global method has been experimentally validated on a group of four subjects, showing a reliable and safe pHRI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا