ﻻ يوجد ملخص باللغة العربية
We study the computational complexity of approximating the 2->q norm of linear operators (defined as ||A||_{2->q} = sup_v ||Av||_q/||v||_2), as well as connections between this question and issues arising in quantum information theory and the study of Khots Unique Games Conjecture (UGC). We show the following: 1. For any constant even integer q>=4, a graph $G$ is a small-set expander if and only if the projector into the span of the top eigenvectors of Gs adjacency matrix has bounded 2->q norm. As a corollary, a good approximation to the 2->q norm will refute the Small-Set Expansion Conjecture--a close variant of the UGC. We also show that such a good approximation can be obtained in exp(n^(2/q)) time, thus obtaining a different proof of the known subexponential algorithm for Small Set Expansion. 2. Constant rounds of the Sum of Squares semidefinite programing hierarchy certify an upper bound on the 2->4 norm of the projector to low-degree polynomials over the Boolean cube, as well certify the unsatisfiability of the noisy cube and short code based instances of Unique Games considered by prior works. This improves on the previous upper bound of exp(poly log n) rounds (for the short code), as well as separates the Sum of Squares/Lasserre hierarchy from weaker hierarchies that were known to require omega(1) rounds. 3. We show reductions between computing the 2->4 norm and computing the injective tensor norm of a tensor, a problem with connections to quantum information theory. Three corollaries are: (i) the 2->4 norm is NP-hard to approximate to precision inverse-polynomial in the dimension, (ii) the 2->4 norm does not have a good approximation (in the sense above) unless 3-SAT can be solved in time exp(sqrt(n) polylog(n)), and (iii) known algorithms for the quantum separability problem imply a non-trivial additive approximation for the 2->4 norm.
The degree-$4$ Sum-of-Squares (SoS) SDP relaxation is a powerful algorithm that captures the best known polynomial time algorithms for a broad range of problems including MaxCut, Sparsest Cut, all MaxCSPs and tensor PCA. Despite being an explicit alg
Finding cliques in random graphs and the closely related planted clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynom
Estimation is the computational task of recovering a hidden parameter $x$ associated with a distribution $D_x$, given a measurement $y$ sampled from the distribution. High dimensional estimation problems arise naturally in statistics, machine learnin
In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that
We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-$3$ tensor $T$ of the form $T = tau cdot v_0^{otimes 3} + A$, where $tau geq 0$ is a signal-to-noise ratio, $v_0$ is a