ﻻ يوجد ملخص باللغة العربية
Let g be a finite-dimensional simple Lie algebra of rank r over an algebraically closed field of characteristic zero, and let e be a nilpotent element of g. Denote by g^e the centralizer of e in g and by S(g^e)^{g^e} the algebra of symmetric invariants of g^e. We say that e is good if the nullvariety of some r homogeneous elements of S(g^e)^{g^e} in the dual of g^{e} has codimension r. If e is good then S(g^e)^{g^e} is polynomial. The main result of this paper stipulates that if for some homogeneous generators of S(g^e)^{g^e}, the initial homogeneous component of their restrictions to e+g^f are algebraically independent, with (e,h,f) an sl2-triple of g, then e is good. As applications, we obtain new examples of nilpotent elements that verify the above polynomiality condition, in in simple Lie algebras of both classical and exceptional types. We also give a counter-example in type D_7.
Let $mathfrak{g}$ be a finite-dimensional simple Lie algebra of rank $ell$ over an algebraically closed field $Bbbk$ of characteristic zero, and let $(e,h,f)$ be an $mathfrak{sl}_2$-triple of g. Denote by $mathfrak{g}^{e}$ the centralizer of $e$ in $
Every conic symplectic singularity admits a universal Poisson deformation and a universal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by showing that every such variety admits a universal equivariant Poisson d
Suppose V is a finite dimensional, complex vector space, A is a finite set of codimension one subspaces of V, and G is a finite subgroup of the general linear group GL(V) that permutes the hyperplanes in A. In this paper we study invariants and semi-
For a finite dimensional complex Lie algebra, its index is the minimal dimension of stabilizers for the coadjoint action. A famous conjecture due to Elashvili says that the index of the centralizer of an element of a reductive Lie algebra is equal to